Tag Archives: 2008 Summer Olympics

JOINT PAIN SOLUTIONS

Proper Exercise: An effective prescription for joint pain

Regular movement can help relieve ankle, knee, hip, or shoulder pain

Joint pain can rob you of life’s simple pleasures — you may no longer look forward to walking your dog, gardening, or chasing a tennis ball across the court. Even the basics of getting through your day, like getting into the car or carrying laundry to the basement, can become sharp reminders of your limitations.

But the right exercises performed properly can be a long-lasting way to subdue ankle, knee, hip, or shoulder pain. Although it might seem that exercise would aggravate aching joints, this is simply not the case. Exercise can actually help to relieve joint pain in multiple ways:

*It increases the strength and flexibility of the muscles and connective tissue surrounding the joints. When thigh muscles are stronger, for example, they can help support the knee, thus relieving some of the pressure on that joint.

*Exercise relieves stiffness, which itself can be painful. The body is made to move. When not exercised, the tendons, muscles, and ligaments quickly shorten and tense up. But exercise — and stretching afterward — can help reduce stiffness and preserve or extend your range of motion.

*It boosts production of synovial fluid, the lubricant inside the joints. Synovial fluid helps to bring oxygen and nutrients into joints. Thus, exercise helps keep your joints “well-oiled.”

*It increases production of natural compounds in the body that help tamp down pain. In other words, without exercise, you are more sensitive to every twinge. With it, you have a measure of natural pain protection.

*It helps you keep your weight under control, which can help relieve pressure in weight-bearing joints, such as your hips, knees, and ankles.

.
Other Options:

Medications:
For moderate-to-severe joint pain with swelling, an over-the-counter or prescription nonsteroidal anti-inflammatory drug (NSAID) such as aspirin, ibuprofen (Advil, Motrin), or naproxen sodium (Aleve), can provide relief. A newer generation of NSAIDs known as Cox-2 inhibitors (celcoxib) is also good for pain relief, but all except one of these drugs (Celebrex) have been removed from the market because of an increased risk of heart attack, stroke, and other cardiovascular events. NSAIDs also can have side effects, potentially increasing your risk for gastrointestinal bleeding.

Home Remedies:
You can relieve short-term joint pain with a few simple techniques at home. One method is known by the acronym, PRICE:

*Protect the joint with a brace or wrap.
*Rest the joint, avoiding any activities that cause you pain.
*Ice the joint for about 15 minutes, several times each day.
*Compress the joint using an elastic wrap.
*Elevate the joint above the level of your heart.

Applying ice to your painful joints can relieve the pain and inflammation. For muscle spasms around joints, try using a heating pad or wrap several times a day. Your doctor may recommend that you tape or splint the joint to minimize movement or reduce pain, but avoid keeping the joint still for too long because it can eventually become stiff and lose function.
Topical Agents:

Capsaicin — a substance found in chili peppers — may relieve joint pain from arthritis and other conditions. Capsaicin blocks substance P, which helps transmit pain signals, and it triggers the release of chemicals in the body called endorphins, which block pain. Side effects of capsaicin cream include burning or stinging in the area where it is applied. Another topical option is an arthritis cream containing the ingredient, methyl salicylate (Ben Gay).

Injections:
For people who don’t find joint pain relief from oral or topical medications, the doctor can inject a steroid medication (which may be combined with a local anesthetic) directly into the joint every three months to four months. Steroid injections are most commonly used in patients with arthritis, joint disease, or tendinitis. The procedure is effective, but in most situations the effect be temporary. It can also have side effects; if steroid injections mask an injury, you could overuse the joint and damage it even further.

Other injection options include:

*Removing fluid from the joint (and is often done in connection with a steroid injection)
*Injections of hyaluronan, a synthetic version of the natural joint fluid. This is used to treat osteoarthritis

Alternative Treatments options:

Some research has indicated that glucosamine and chondroitin supplements can help with joint pain and improve function. Both of these substances are components of normal cartilage, which helps cushion the bones and protect joints. Glucosamine and chondroitin supplements are available in capsule, tablet, powder, or liquid form. Although these supplements don’t work for everyone, they are safe to try because they don’t have any significant side effects.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.
Resources:
https://mail.google.com/mail/u/0/#inbox/15b2a220268d8be1
http://www.webmd.com/pain-management/guide/joint-pain#3-7

Advertisements

A Bridge to a Relaxation

Whenever you feel tightness in your chest, shoulders and back, practice this variation of a backbend, or bridge pose. It will help release tension in your mid- and upper back as well as stretch and strengthen your hips and legs.

CLICK & SEE

Step-1. Lie back on a mat with your heels resting on a sturdy chair. Extend your arms alongside your body, palms flat on the floor. Make sure your feet are hip-distance apart and your knees are parallel to each other.

Step-2. On an inhale, press firmly on your feet as you raise your hips toward the ceiling. Interlace your fingers and rotate your upper arms outward so your shoulders can roll under. Keep your arms and hands on the floor while imagining your shoulder blades are moving up and through your chest. This will help open and release tight spots in your upper and middle back and chest area. Hold this position and focus on slow, deep breathing. To come down, release your hands and slowly lower your hips to the floor.

Source : Los Angeles Times

Reblog this post [with Zemanta]

Rift Valley Fever

Rift Valley fever

Image via Wikipedia

Defibition:
Rift Valley Fever (RVF) is a viral zoonosis (affects primarily domestic livestock, but can be passed to humans) causing fever. It is spread by the bite of infected mosquitoes, typically the Aedes or Culex genera.

click & see

The disease is caused by the RVF virus, a member of the genus Phlebovirus (family Bunyaviridae). The disease was first reported among livestock in Kenya around 1915, but the virus was not isolated until 1931. RVF outbreaks occur across sub-Saharan Africa, with outbreaks occurring elsewhere infrequently (but sometimes severely – in Egypt in 1977-78, several million people were infected and thousands died during a violent epidemic. In Kenya in 1998, the virus claimed the lives of over 400 Kenyans. In September 2000 an outbreak was confirmed in Saudi Arabia and Yemen).

In humans the virus can cause several different syndromes. Usually sufferers have either no symptoms or only a mild illness with fever, headache, myalgia and liver abnormalities. In a small percentage of cases (< 2%) the illness can progress to hemorrhagic fever syndrome, meningoencephalitis (inflammation of the brain), or affecting the eye. Patients who become ill usually experience fever, generalized weakness, back pain, dizziness, and weight loss at the onset of the illness. Typically, patients recover within 2-7 days after onset.

RVF virus is a member of the Phlebovirus genus, one of the five genera in the family Bunyaviridae. The virus was first identified in 1931 during an investigation into an epidemic among sheep on a farm in the Rift Valley of Kenya. Since then, outbreaks have been reported in sub-Saharan and North Africa. In 1997-98, a major outbreak occurred in Kenya, Somalia and Tanzania and in September 2000, RVF cases were confirmed in Saudi Arabia and Yemen, marking the first reported occurrence of the disease outside the African continent and raising concerns that it could extend to other parts of Asia and Europe.

Approximately 1% of human sufferers die of the disease. Amongst livestock the fatality level is significantly higher. In pregnant livestock infected with RVF there is the abortion of virtually 100% of fetuses. An epizootic (animal disease epidemic) of RVF is usually first indicated by a wave of unexplained abortions.

TRANSMISSION TO HUMANS:
*The vast majority of human infections result from direct or indirect contact with the blood or organs of infected animals. The virus can be transmitted to humans through the handling of animal tissue during slaughtering or butchering, assisting with animal births, conducting veterinary procedures, or from the disposal of carcasses or fetuses. Certain occupational groups such as herders, farmers, slaughterhouse workers and veterinarians are therefore at higher risk of infection. The virus infects humans through inoculation, for example via a wound from an infected knife or through contact with broken skin, or through inhalation of aerosols produced during the slaughter of infected animals. The aerosol mode of transmission has also led to infection in laboratory workers.

*There is some evidence that humans may also become infected with RVF by ingesting the unpasteurized or uncooked milk of infected animals.

*Human infections have also resulted from the bites of infected mosquitoes, most commonly the Aedes mosquito.

*Transmission of RVF virus by hematophagous (blood-feeding) flies is also possible.

*To date, no human-to-human transmission of RVF has been documented, and no transmission of RVF to health care workers has been reported when standard infection control precautions have been put in place.

*There has been no evidence of outbreaks of RVF in urban areas.

CLINICAL FEATURES IN HUMANS
Mild form of RVF in humans

*The incubation period (interval from infection to onset of symptoms) for RVF varies from two to six days.

*Those infected either experience no detectable symptoms or develop a mild form of the disease characterized by a feverish syndrome with sudden onset of flu-like fever, muscle pain, joint pain and headache.

*Some patients develop neck stiffness, sensitivity to light, loss of appetite and vomiting; in these patients the disease, in its early stages, may be mistaken for meningitis.

*The symptoms of RVF usually last from four to seven days, after which time the immune response becomes detectable with the appearance of antibodies and the virus gradually disappears from the blood.

Severe form of RVF in humans:

*While most human cases are relatively mild, a small percentage of patients develop a much more severe form of the disease. This usually appears as one or more of three distinct syndromes: ocular (eye) disease (0.5-2% of patients), meningoencephalitis (less than 1%) or haemorrhagic fever (less than 1%).

*Ocular form: In this form of the disease, the usual symptoms associated with the mild form of the disease are accompanied by retinal lesions. The onset of the lesions in the eyes is usually one to three weeks after appearance of the first symptoms. Patients usually report blurred or decreased vision. The disease may resolve itself with no lasting effects within 10 to 12 weeks. However, when the lesions occur in the macula, 50% of patients will experience a permanent loss of vision. Death in patients with only the ocular form of the disease is uncommon.

*Meningoencephalitis form: The onset of the meningoencephalitis form of the disease usually occurs one to four weeks after the first symptoms of RVF appear. Clinical features include intense headache, loss of memory, hallucinations, confusion, disorientation, vertigo, convulsions, lethargy and coma. Neurological complications can appear later (> 60 days). The death rate in patients who experience only this form of the disease is low, although residual neurological deficit, which may be severe, is common.

*Haemorrhagic fever form: The symptoms of this form of the disease appear two to four days after the onset of illness, and begin with evidence of severe liver impairment, such as jaundice. Subsequently signs of haemorrhage then appear such as vomiting blood, passing blood in the faeces, a purpuric rash or ecchymoses (caused by bleeding in the skin), bleeding from the nose or gums, menorrhagia and bleeding from venepuncture sites. The case-fatality ratio for patients developing the haemorrhagic form of the disease is high at approximately 50%. Death usually occurs three to six days after the onset of symptoms. The virus may be detectable in the blood for up to 10 days, in patients with the hemorrhagic icterus form of RVF.

The total case fatality rate has varied widely between different epidemics but, overall, has been less than 1% in those documented. Most fatalities occur in patients who develop the haemorrhagic icterus form.

DIAGNOSIS
Acute RVF can be diagnosed using several different methods. Serological tests such as enzyme-linked immunoassay (the “ELISA” or “EIA” methods) may confirm the presence of specific IgM antibodies to the virus. The virus itself may be detected in blood during the early phase of illness or in post-mortem tissue using a variety of techniques including virus propagation (in cell cultures or inoculated animals), antigen detection tests and RT-PCR.

TREATMENT AND VACCINE

*As most human cases of RVF are relatively mild and of short duration, no specific treatment is required for these patients. For the more severe cases, the predominant treatment is general supportive therapy.

*An inactivated vaccine has been developed for human use. However, this vaccine is not licensed and is not commercially available. It has been used experimentally to protect veterinary and laboratory personnel at high risk of exposure to RVF. Other candidate vaccines are under investigation.

RVF VIRUS IN ANIMAL HOSTS
*RVF is able to infect many species of animals causing severe disease in domesticated animals including cattle, sheep, camels and goats. Sheep appear to be more susceptible than cattle or camels.

*Age has also been shown to be a significant factor in the animal’s susceptibility to the severe form of the disease: over 90% of lambs infected with RVF die, whereas mortality among adult sheep can be as low as 10%.

*The rate of abortion among pregnant infected ewes is almost 100%. An outbreak of RVF in animals frequently manifests itself as a wave of unexplained abortions among livestock and may signal the start of an epidemic.

RVF VECTORS
*Several different species of mosquito are able to act as vectors for transmission of the RVF virus. The dominant vector species varies between different regions and different species can play different roles in sustaining the transmission of the virus.

*Among animals, the RVF virus is spread primarily by the bite of infected mosquitoes, mainly the Aedes species, which can acquire the virus from feeding on infected animals. The female mosquito is also capable of transmitting the virus directly to her offspring via eggs leading to new generations of infected mosquitoes hatching from eggs. This accounts for the continued presence of the RVF virus in enzootic foci and provides the virus with a sustainable mechanism of existence as the eggs of these mosquitoes can survive for several years in dry conditions. During periods of heavy rainfall, larval habitats frequently become flooded enabling the eggs to hatch and the mosquito population to rapidly increase, spreading the virus to the animals on which they feed.

*There is also a potential for epizootics and associated human epidemics to spread to areas that were previously unaffected. This has occurred when infected animals have introduced the virus into areas where vectors were present and is a particular concern. When uninfected Aedes and other species of mosquitoes feed on infected animals, a small outbreak can quickly be amplified through the transmission of the virus to other animals on which they subsequently feed.

PREVENTION AND CONTROL
Controlling RVF in animals

*Outbreaks of RVF in animals can be prevented by a sustained programme of animal vaccination. Both modified live attenuated virus and inactivated virus vaccines have been developed for veterinary use. Only one dose of the live vaccine is required to provide long-term immunity but the vaccine that is currently in use may result in spontaneous abortion if given to pregnant animals. The inactivated virus vaccine does not have this side effect, but multiple doses are required in order to provide protection which may prove problematic in endemic areas.

*Animal immunization must be implemented prior to an outbreak if an epizootic is to be prevented. Once an outbreak has occurred animal vaccination should NOT be implemented because there is a high risk of intensifying the outbreak. During mass animal vaccination campaigns, animal health workers may, inadvertently, transmit the virus through the use of multi-dose vials and the re-use of needles and syringes. If some of the animals in the herd are already infected and viraemic (although not yet displaying obvious signs of illness), the virus will be transmitted among the herd, and the outbreak will be amplified.

*Restricting or banning the movement of livestock may be effective in slowing the expansion of the virus from infected to uninfected areas.

*As outbreaks of RVF in animals precede human cases, the establishment of an active animal health surveillance system to detect new cases is essential in providing early warning for veterinary and human public health authorities.

Public health education and risk reduction:

*During an outbreak of RVF, close contact with animals, particularly with their body fluids, either directly or via aerosols, has been identified as the most significant risk factor for RVF virus infection. In the absence of specific treatment and an effective human vaccine, raising awareness of the risk factors of RVF infection as well as the protective measures individuals can take to prevent mosquito bites, is the only way to reduce human infection and deaths.

Public health messages for risk reduction should focus on:

*reducing the risk of animal-to-human transmission as a result of unsafe animal husbandry and slaughtering practices. Gloves and other appropriate protective clothing should be worn and care taken when handling sick animals or their tissues or when slaughtering animals.
*reducing the risk of animal-to-human transmission arising from the unsafe consumption of fresh blood, raw milk or animal tissue. In the epizootic regions, all animal products (blood, meat and milk) should be thoroughly cooked before eating.

*the importance of personal and community protection against mosquito bites through the use of impregnated mosquito nets, personal insect repellent if available, by wearing light coloured clothing (long-sleeved shirts and trousers) and by avoiding outdoor activity at peak biting times of the vector species.
Infection control in health care settings
*Although no human-to-human transmission of RVF has been demonstrated, there is still a theoretical risk of transmission of the virus from infected patients to healthcare workers through contact with infected blood or tissues. Healthcare workers caring for patients with suspected or confirmed RVF should implement Standard Precautions when handling specimens from patients.

*Standard Precautions define the work practices that are required to ensure a basic level of infection control. Standard Precautions are recommended in the care and treatment of all patients regardless of their perceived or confirmed infectious status. They cover the handling of blood (including dried blood), all other body fluids, secretions and excretions (excluding sweat), regardless of whether they contain visible blood, and contact with non-intact skin and mucous membranes. A WHO Aide–memoire on Standard Precautions in health care is available at: http://www.who.int/csr/resources/publications/standardprecautions/en/index.html

*As noted above, laboratory workers are also at risk. Samples taken from suspected human and animal cases of RVF for diagnosis should be handled by trained staff and processed in suitably equipped laboratories.

.
Vector control
*Other ways in which to control the spread of RVF involve control of the vector and protection against their bites.
*Larviciding measures at mosquito breeding sites are the most effective form of vector control if breeding sites can be clearly identified and are limited in size and extent. During periods of flooding, however, the number and extent of breeding sites is usually too high for larviciding measures to be feasible.

.
RVF FORESCASTING AND CLIMATIC MODELS
Forecasting can predict climatic conditions that are frequently associated with an increased risk of outbreaks, and may improve disease control. In Africa, Saudi Arabia and Yemen RVF outbreaks are closely associated with periods of above-average rainfall. The response of vegetation to increased levels of rainfall can be easily measured and monitored by Remote Sensing Satellite Imagery. In addition RVF outbreaks in East Africa are closely associated with the heavy rainfall that occurs during the warm phase of the El Niño/Southern Oscillation (ENSO) phenomenon.

These findings have enabled the successful development of forecasting models and early warning systems for RVF using satellite images and weather/climate forecasting data. Early warning systems, such as these, could be used to detect animal cases at an early stage of an outbreak enabling authorities to implement measures to avert impending epidemics.

Within the framework of the new International Health Regulations (2005), the forecasting and early detection of RVF outbreaks, together with a comprehensive assessment of the risk of diffusion to new areas, are essential to enable effective and timely control measures to be implemented.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
http://en.wikipedia.org/wiki/Rift_Valley_fever
http://www.who.int/mediacentre/factsheets/fs207/en/

Reblog this post [with Zemanta]

Nutrition: Fish Oil for Mom May Benefit Her Child

Women who take fish oil supplements while pregnant may improve the hand-eye coordination of their children, according to a small Australian study.

In a trial published online Dec. 21 in The Archives of Disease in Childhood: Fetal and Neonatal Edition, scientists divided 98 women into two groups. Beginning at 20 weeks of pregnancy and continuing until the women gave birth, the first group took a daily dose of four grams of fish oil, while the second group took four grams of olive oil each day. Neither the mothers nor the researchers knew which supplement the women had received until the study ended.

The researchers examined 72 children born to women who completed the study when the children were 2½ years old. In tests of locomotor ability, speech and hearing, vocabulary and practical reasoning, the children whose mothers were given fish oil during pregnancy scored slightly higher, but the differences were not statistically significant. However, after controlling for maternal age, birth weight, breast-feeding and other factors, the children of the women who took fish oil were significantly better at hand-eye coordination than those of the women who took the olive oil supplement.

The authors acknowledged that their sample was small, and that they could not exclude the possibility that the result was due to chance. Still, children who received prenatal fish oil did consistently perform better on all measures of development.

“These preliminary data indicate that supplementation with a relatively high-dose fish oil during the last 20 weeks of pregnancy is not only safe,” the authors concluded, “but also seems to have potential beneficial effects that need to be explored further.”

Source:The New York Times