Tag Archives: Chronic kidney disease

Maytenus ilicifolia

Botanical Name : Maytenus ilicifolia
Family: Celastraceae
Subfamily: Celastroideae
Genus: Maytenus
Kingdom: Plantae
Order: Celastrales

Synonyms: Celastrus ilicinus, Gymnosporia ilicina, Maytenus ilicina
Common Names: Espinheira santa, cancerosa, cangorosa, maiteno, limaosinho
Habitat :Maytenus ilicifolia is native to Central and South America, Southeast Asia, Micronesia and Australasia, the Indian Ocean and Africa. They grow in a very wide variety of climates,
from tropical to subpolar.
Description:
Espinheira santa is a small, shrubby evergreen tree growing to 5 m in height with leaves and berries that resemble holly. It is native to many parts of South America and southern Brazil and it  is even found in city landscapes for its attractive, holly-like appearance. With over 200 species of Maytenus distributed in temperate and tropical regions throughout South America and the
West Indies, there are many Maytenus species that are indigenous to the Amazon region which have been used medicinally by indigenous tribes. It is even found in city landscapes for its
attractive, holly-like appearance….....CLICK  &   SEE  THE  PICTURES

Chemical Constituents:
Espinheira santa is a source for a group of well known chemicals (found in the leaf, bark and roots of the tree) called maytansinoids. These chemicals represent a class of substances which
have been studied since the early 1970’s for their antitumorous and anticancerous activities and are today, being developed into chemotherapy drugs. A different class of chemicals found in
espinheira santa – triterpene chemicals called cangorins – have also evidenced significant antitumorous, antileukemic, and anticancerous properties.

The main plant chemicals in espinheira santa include: atropcangorosin, cangoaronin, cangorins A thru J, cangorinine, cangorosin A & B, celastrol, dispermol, dispermone, friedelan,
friedelin, friedelinol, friedoolean, friedooleanan, ilicifolin, ilicifolinoside A thru C, kaempferol trisaccharides, kaempferol disaccharides, maitenine, maytanbutine, maytanprine, maytansine,
maytenin, maytenoic acid, maytenoquinone, pristimeriin, pristimerin, quercetin trisaccharides, quercitrin, salaspermic acid, tingenol, and tingenone

Medicinal Uses:
Leaf infusions and leaf powder in capsules or tablets are currently being used for ulcers, as an antacid, as a laxative, as a colic remedy, to eliminate toxins through the kidneys and skin, to
support kidneys, support adrenal glands, support digestive functions, and as an adjunctive therapy for cancer.

Espinheira santa is widely sold in Brazilian stores and pharmacies today for stomach ulcers and cancer. With its popularity and beneficial results in South America, as well as its recent
western research, espinheira santa is slowly becoming more popular and well known in the United States. Leaf infusions and/or leaf powder in capsules or tablets are currently being used for  ulcers, as an antacid, as a laxative, as a colic remedy, to eliminate toxins through the kidneys and skin, to support kidneys, support adrenal glands, support digestive functions, and as an adjunctive therapy for cancer.

Main Preparation Method: decoction or capsules
Main Actions (in order): anticancerous, antacid, antiulcerous, menstrual stimulant, detoxifier

Main Uses:
*For cancer (melanoma, carcinoma, adenocarcinoma, lymphoma, leukemia)
*For stomach disorders (ulcers, acid reflux, gastritis, dyspepsia, indigestion, and to tone, balance, and strengthen the gastric tract)
as a menstrual stimulant and for estrogen hormonal balancing during menopause
*For adrenal exhaustion and to support adrenal function
*For detoxification (skin, blood, kidney, stomach, adrenals)

Contraindications:
Research suggests that water extracts of espinheira santa may have estrogenic effects and reduce fertility in females. Women seeking treatment for infertility, attempting to get pregnant, or  those with estrogen positive cancers should not use this plant.

Drug Interactions: One study with mice injected with a water extract of leaves recorded barbiturate potentiation activity. However the same study notes no potentiation activity when
administered to mice orally.
Disclaimer : The information presented herein is intended for educational purposes only. Individual results may vary, and before using any supplement, it is always advisable to consult with    your own health care provider.

Resources:
https://en.wikipedia.org/wiki/Maytenus
http://toptropicals.com/catalog/uid/Maytenus_ilicifolia.htm
http://strophantin.com/index.php?id_product=413&controller=product&id_lang=1

Advertisements

Kidney dialysis

 

Introduction:
In order for blood to perform its essential functions of bringing nutrients and oxygen to the cells of the body, and carrying waste materials away from those cells, the chemical composition of the blood must be carefully controlled. Blood contains particles of many different sizes and types, including cells, proteins, dissolved ions, and organic waste products. Some of these particles, such as proteins like hemoglobin, are essential for the body. Others, such as urea (a waste product from protein metabolism), must be removed from the blood or they will accumulate and interfere with normal metabolic processes. Still other particles, including many of the simple ions dissolved in the blood, are required by the body in certain concentrations that must be tightly regulated, especially when the intake of these chemicals varies. The body has many different means of controlling the chemical composition of the blood. For instance, you learned in the “Iron Use and Storage in the Body: Ferritin and Molecular Representations” tutorial that the ferritin protein can help to control the amount of free iron in the blood. As you will discover in the tutorial entitled, “Blood, Sweat, and Buffers: pH Regulation During Exercise”, buffers dissolved in the blood can help regulate the blood’s pH. But the largest responsibility for maintaining the chemistry of the blood falls to the kidneys, a pair of organs located just behind the lining of the abdominal cavity. It is the job of the kidneys to remove the harmful particles from the blood and to regulate the blood’s ionic concentrations, while keeping the essential particles in the blood

CLICK & SEE THE PICTURES

Healthy kidneys clean the blood by removing excess fluid, salt and wastes. When they fail, harmful wastes build up, blood pressure may rise, and the body may retain excess fluid. When this happens, treatment – dialysis or a kidney transplant – is needed to replace the work of the failed kidneys, which is known as end-stage renal failure (ESRF).

 

There are three primary and two secondary types of dialysis: hemodialysis (primary), peritoneal dialysis (primary), hemofiltration (primary), hemodiafiltration (secondary), and intestinal dialysis (secondary).

Hemodialysis:
Haemodialysis (HD) is the most common method used to treat ESRF and has been available since the 1960s. Despite some advances in dialysis machines in recent years, HD is still a complicated and inconvenient therapy requiring a coordinated effort from a large healthcare team, including:

•GP
•Nephrologist (kidney doctor)
•Dialysis nurse
•Dialysis technician
•Dietitian
•Social worker
One important step before starting HD is a small operation to prepare a site on the body. One of the arteries in your arm is re-routed to join a vein, forming a fistula. Blood is removed from the fistula, cleaned and returned to it, allowing dialysis process to take place.

Needles are inserted into a fistula (the point of access to the bloodstream) at the start of HD. You may find this one of the hardest parts, although most people report getting used to them after a few sessions. If it’s painful, an anesthetic cream or spray can be applied to the skin.

CLICK & SEE

In HD, blood is allowed to flow, a small amount at a time, through a special filter (the ‘dialyser’ or ‘artificial kidney’) that removes wastes and extra fluids. The clean blood is then returned to your body via the fistula. This helps to keep the correct amount of water in the body, control blood pressure – and keep the proper balance of chemicals such as potassium, sodium and acid.

Most people have HD three times a week for three to five hours, with a morning, afternoon or evening ‘slot’; depending on availability and capacity at a dialysis unit, usually in a large hospital. Some receive it at a smaller satellite unit nearer home, and a few have HD in their own homes.

By learning about the treatment, and working with your healthcare team, it’s possible to have a full, active life

Peritoneal dialysis:
Peritoneal dialysis (PD) became an alternative to HD in the 1980s, with many preferring the independence it brings them.

It means you don’t have to have dialysis sessions at a unit, but can give treatments at home, at work or on holiday. Like HD, by learning about the treatment, and working with the medical team, it’s possible to have a full and active life.

CLICK & SEE

In PD, a soft tube called a catheter is used to fill the abdomen with a cleansing liquid called dialysis solution. The abdominal cavity is lined with a layer called the peritoneum. Waste products and extra fluid (and salt) then pass through the peritoneum from the blood into the dialysis solution. They then leave the body when the dialysis solution is drained. This used solution is then thrown away.

The process of draining and filling is called an ‘exchange’ and takes about 30 to 40 minutes. The period the dialysis solution is in the abdomen is called the ‘dwell time’. A typical schedule is four exchanges a day, each with a dwell time of four to eight hours.

There are many forms of PD. One doesn’t even require a machine and it’s possible to walk around with the dialysis solution in your abdomen. Talk to your specialist about what’s best for your particular situation.

Whatever form is chosen, an operation is needed to have the soft catheter placed in the abdomen, which will carry the dialysis solution in and out of the abdomen. It’s usually inserted two weeks before dialysis proceeds, to allow scar tissue to build up that will hold it in place.

Hemofiltration:
Hemofiltration is a similar treatment to hemodialysis, but it makes use of a different principle. The blood is pumped through a dialyzer or “hemofilter” as in dialysis, but no dialysate is used. A pressure gradient is applied; as a result, water moves across the very permeable membrane rapidly, “dragging” along with it many dissolved substances, importantly ones with large molecular weights, which are cleared less well by hemodialysis. Salts and water lost from the blood during this process are replaced with a “substitution fluid” that is infused into the extracorporeal circuit during the treatment. Hemodiafiltration is a term used to describe several methods of combining hemodialysis and hemofiltration in one process.

Hemodiafiltration:
Hemodialfiltration is a combination of hemodialysis and hemofiltration. In theory, this technique offers the advantages of both hemodialysis and hemofiltration.

Intestinal dialysis:
In intestinal dialysis, the diet is supplemented with soluble fibres such as acacia fibre, which is digested by bacteria in the colon. This bacterial growth increases the amount of nitrogen that is eliminated in fecal waste.  An alternative approach utilizes the ingestion of 1 to 1.5 liters of non-absorbable solutions of polyethylene glycol or mannitol every fourth hour.

Which is better?
Neither technique ‘cures’ ESRF, as they only provide about five per cent of normal kidney function. In other words, they control kidney failure to an extent. It’s hard to state which technique is ‘better’ for which patient, as both have pros and cons. Many patients will have both in their continuing treatment.

Living with dialysis
Adjusting to the effects of ESRF and the time spent on dialysis can be difficult. Aside from the ‘lost time’ (dialysis can take six to eight hours a day) most patients feel they have less energy. Many need to make changes in their work or home life, and can feel depressed when starting the process, or after several months of treatment. It’s good to talk with a social worker, nurse or doctor as this is a common problem that can often be treated effectively.

If you’re feeling well, your kidney specialist should measure the effectiveness of the dialysis with blood tests at least once a month in HD, and once every three months in PD.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose
Resources:
http://www.bbc.co.uk/health/physical_health/conditions/in_depth/kidneys/kidneys_dialysis.shtml
http://en.wikipedia.org/wiki/Dialysis
http://www.chemistry.wustl.edu/~edudev/LabTutorials/Dialysis/Kidneys.html

Enhanced by Zemanta

Daily Dose of Baking Soda Can Save Kidney

A daily dose baking soda or sodium bicarbonate, used in baking, cleaning, acid indigestion, sunburn and more slows the decline of kidney function in some patients with advanced chronic kidney disease (CKD), a new study has found.

“This cheap and simple strategy also improves patients’ nutritional status, and has the potential of translating into significant economic, quality of life, and clinical outcome benefits,” comments Magdi Yaqoob, of the Royal London Hospital (RLH), who led the study.

Researchers studied 134 patients with advanced CKD and low bicarbonate levels, also called metabolic acidosis. One group received a small daily dose of sodium bicarbonate in tablet form, in addition to their usual care.

For this group, the rate of decline in kidney function was greatly reduced — about two-thirds slower than in patients. “In fact, in patients taking sodium bicarbonate, the rate of decline in kidney function was similar to the normal age-related decline,” says Yaqoob.

Rapid progression of kidney disease occurred in just nine percent of patients taking sodium bicarbonate, compared to 45 percent of the other group. Patients taking sodium bicarbonate were also less likely to develop end-stage renal disease (ESRD) requiring dialysis.

Patients taking sodium bicarbonate also had improvement in several measures of nutrition. Although their sodium levels went up, this didn’t lead to any problems with increased blood pressure.

Low bicarbonate levels are common in patients with CKD and can lead to a wide range of other problems. “This is the first randomised controlled study of its kind,” says Yaqoob.

“A simple remedy like sodium bicarbonate (baking soda), when used appropriately, can be very effective,” he adds, according to an RLH release.

These findings were published in the Journal of the American Society of Nephrology (JASN).

Source: The Times Of India

Reblog this post [with Zemanta]

Urinalysis

Definition :
Urinalysis is the physical, chemical, and microscopic examination of urine. It involves a number of tests to detect and measure various compounds that pass through the urine.

CLICK & SEE

It is a routine examination of the urine for cells, tiny structures, bacteria, and chemicals that suggest various illnesses. A urine culture attempts to grow large numbers of bacteria from a urine sample to diagnose a bacterial urine infection.


How the Test is Performed

A urine sample is needed. Your health care provider will tell you what type of urine sample is needed. For information on how to collect a urine sample, see:

*24-hour urine collection
*Clean catch urine specimen

There are three basic steps to a complete urinalysis:

1. Physical color and appearance:

*What does the urine look like to the naked eye?
*Is it clear or cloudy?
*Is it pale or dark yellow or another color?

The urine specific gravity test reveals how concentrated or dilute the urine is.

2.Microscopic appearance:

The urine sample is examined under a microscope. This is done to look at cells, urine crystals, mucus, and other substances, and to identify any bacteria or other microorganisms that might be present.

3,Chemical appearance:

A special stick (“dipstick”) tests for various substances in the urine. The stick contains little pads of chemicals that change color when they come in contact with the substances of interest.

Click to See : Urine chemistry

How to Prepare for the Test:
For a regular urinalysis, you are asked to urinate briefly into a plastic cup. When urine is collected for a urine culture, you must provide a “clean catch” sample – one that is not contaminated by skin cells and skin bacteria. This is so the doctor can obtain a sample of urine from inside your bladder, where normally there should be no bacteria. In contrast, there are many bacteria on the skin of a penis or in a vagina. The trick (harder for a woman than a man) is to pee directly into a sterile container without having the stream of urine first touch your skin or the nonsterile tissues of the vagina.

To collect a clean catch sample, you are given a sterile plastic container and asked to wipe off the area around your urethra (where urine exits) with an antiseptic cloth. For women, it’s also helpful to hold the two labia (outer walls) of the vagina apart with one hand when you urinate, so that the stream of urine passes directly into the sterile container. Since the first flow of urine is most likely to be contaminated by bacteria from around the opening of the urethra, first urinate for a moment into the toilet and then use the cup to collect the “middle” portion of your urine stream.

Certain medicines change the color of urine, but this is not a sign of disease. Your doctor may tell you to stop taking any medicines that can affect test results.

Medicines that can change your urine color include:

*Chloroquine
*Iron supplements
*Levodopa
*Nitrofurantoin
*Phenazopyridine
*Phenothiazines
*Phenytoin
*Riboflavin
*Triamterene

Why the Test is Performed :-

A urinalysis may be done:

As part of a routine medical exam to screen for early signs of disease
If you have signs of diabetes or kidney disease, or to monitor you if you are being treated for these conditions
To check for blood in the urine
To diagnose a urinary tract infection
Additional conditions under which the test may be performed:

*Acute bilateral obstructive uropathy
*Acute nephritic syndrome
*Acute tubular necrosis
*Acute unilateral obstructive uropathy
*Alkalosis
*Alport syndrome
*Analgesic nephropathy
*Anorexia nervosa
*Atheroembolic renal disease
*Atrial myxoma
*Bladder stones
*Chronic bilateral obstructive uropathy
*Chronic glomerulonephritis
*Chronic or recurrent urinary tract infection
*Chronic renal failure
*Chronic unilateral obstructive uropathy
*Chronic urethritis
*Complicated UTI (pyelonephritis)
*Congenital nephrotic syndrome
*Cystinuria
*Delirium
*Dementia
*Dementia due to metabolic causes
*Diabetes insipidus — central
*Diabetic nephropathy/sclerosis
*Enuresis
*Epididymitis
*Failure to thrive
*Focal segmental glomerulosclerosis
*Goodpasture’s syndrome
*Heart failure
*Hemolytic-uremic syndrome (HUS)
*Henoch-Schonlein purpura
*Insulin-dependent diabetes (IDD)
*IgA nephropathy (Berger’s disease)
*Injury of the kidney and ureter
*Interstitial nephritis
*Irritable bladder
*Left-sided heart failure
*Lupus nephritis
*Malignant hypertension (arteriolar nephrosclerosis)
*Medullary cystic kidney disease
*Membranoproliferative GN I
*Membranoproliferative GN II
*Membranous nephropathy
*Myelomeningocele (children)
*Necrotizing vasculitis
*Nephrotic syndrome
*Noninsulin-dependent diabetes (NIDD)
*Orchitis
*Ovarian cancer
*Paroxysmal nocturnal hemoglobinuria (PNH)
*Polycystic kidney disease
*Post-streptococcal GN
*Prerenal azotemia
*Primary amyloid
*Prostate cancer
*Prostatitis, acute
*Prostatitis, chronic
*Prostatitis, non-bacterial
*Pyelonephritis; acute
*Rapidly progressive (crescentic) glomerulonephritis
*Reflux nephropathy
*Renal papillary necrosis
*Renal tubular acidosis; distal
*Renal tubular acidosis; proximal
*Renal vein thrombosis
*Retrograde ejaculation
*Rhabdomyolysis
*Right-sided heart failure
*Secondary systemic amyloid
*Stress incontinence
*Systemic lupus erythematosus
*Systemic sclerosis (scleroderma)
*Thrombotic thrombocytopenic purpura
*Traumatic injury of the bladder and urethra
*Ureterocele
*Urethral stricture
*Urethritis
*Wegener’s granulomatosis
*Wilms’ tumor

RESULTS:

Normal Results
Normal urine may vary in color from almost colorless to dark yellow. Some foods (like beets and blackberries) may turn the urine a red color.

Usually, glucose, ketones, protein, bilirubin, are not detectable in urine. The following are not normally found in urine:

*Hemoglobin
*Nitrites
*Red blood cells
*White blood cells
Normal value ranges may vary slightly among different laboratories. Talk to your doctor about the meaning of your specific test results.

What Abnormal Results Mean
For specific results, see the individual test article:

*Bilirubin – urine
*Glucose – urine
*Protein – urine
*Red blood cells in urine test
*Urine ketones
*Urine pH
*Urine protein
*Urine specific gravity

How long is it before the result of the test is known?
Your doctor might be able to do a urinalysis in his or her office and can give you the results within 10-15 minutes. If the urine is sent to a separate laboratory, it usually takes several hours to get results, so you may not hear from your doctor until the next day. A urine culture takes 24 to 72 hours to complete, so you may not hear results for several days.

Resources:
https://www.health.harvard.edu/fhg/diagnostics/urinalysis.shtml
http://www.nlm.nih.gov/medlineplus/ency/article/003579.htm

http://www.hallvet.com.au/services/urinalysis.html

Reblog this post [with Zemanta]

Radionuclide Scan of the Kidneys

Definition
A radionuclide scan of the kidneys shows a picture of your kidneys while they are at work making urine.A kidney radionuclide scan, also called a kidney scan or renal scan, is a diagnostic imaging test that involves administering a small amount of radionuclide, also called a radioactive tracer, into the body and then imaging the kidneys with a gamma camera. The images obtained can help in the diagnosis and treatment of various kidney diseases and conditions. This test can be useful to evaluate infection, blockages, injury to the kidneys, and some causes of high blood pressure.

CLICK & SEE

Precautions
A kidney scan requires the use of a radioactive material; therefore, patients who are pregnant or suspect they may be pregnant are cautioned not to have the test unless the benefits outweigh the risks. Women should inform their doctor if they are breast feeding. The doctor will recommend the woman stop breast feeding for a specified period of time, depending on the particular tracer and dose used.

Description
Kidney scans are performed either in a hospital nuclear medicine department or in an outpatient radiology or nuclear medicine facility. The patient is positioned in front of, or under, a gamma camera—a special piece of equipment that detects the radiation emitted from the body and produces an image. An intravenous injection of the radionuclide is administered. Immediately after the injection imaging begins, and, in most studies, the flow of blood to each kidney is evaluated. Serial images of the kidneys are obtained over a specified period of time, depending upon the particular radiopharmaceutical used. Kidney scans may be performed to determine the rate at which the kidneys are filtering a patient’s blood. These studies use a radiopharmaceutical called technetium DTPA (Tc99m DTPA). This radiopharmaceutical also can identify obstruction in the renal collecting system. To establish the function of the renal tubules, the radiopharmaceutical Technetium DMSA (Tc99m DMSA) is used.

A kidney scan ranges from 45 minutes to three hours in length, depending upon the goals of the test, but the test typically takes about an hour to an hour and a half. It is important to understand that kidney scans can reveal an abnormality, but they do not always identify the specific problem. They are very useful in providing information about how the various parts of the kidneys function, which, in turn, can assist in making a diagnosis.

Typically, posterior images are obtained but images are also obtained at oblique angles. If indicated, the patient may be positioned so that mobility of the kidney is demonstrated by sitting up or lying down for the images. If obstruction or renal function is being evaluated, a diuretic (drug to induce urination), such as Lasix, may be injected. If hypertension or renal artery sterosis is being evaluated, Captopril or Enalapril (ACE inhibitors) may be injected.
Preparation
No special preparation is necessary for a kidney scan. In some instances the patient may be required to drink additional liquids and to empty their bladder before the exam. If another nuclear medicine study was recently performed, the patient may have to wait for a specified period to avoid any interference from residual radioactivity in the body. The patient is instructed to remove metal items from the area to be scanned.

Let your doctor know if you could be pregnant or if you are breast-feeding a baby. The medicine used in this test would expose your baby to radiation.

What happens when the test is performed.
You have an IV (intravenous) line placed into a vein. A slightly radioactive version of a substance called sodium pertechnetate is injected through the IV. This substance helps your kidneys and urine show up on pictures.

A camera that is specially designed to detect radioactivity is placed against your back or abdomen. A number of pictures are taken over time. The camera itself does not expose you to any additional radiation, so the number of pictures is not harmful in any way. The test is usually completed within an hour.

Risk Factors:
Many people worry when they hear that the medicine used in this test is slightly radioactive. In truth, this test exposes you to a very small amount of radiation-no greater than that of routine xrays.

Moreover, Nuclear medicine procedures are very safe. Unlike some of the dyes that may be used in x-ray studies, radioactive tracers rarely cause side effects. There are no long-lasting effects of the tracers themselves, because they have no functional effects on the body’s tissues. If pharmaceuticals are injected these can temporarily raise or lower blood pressure, or cause one to urinate.

Aftercare
Patients can resume their normal daily activities immediately after the test. Most radioactive tracers are excreted through the urinary system, so drinking fluids after a kidney scan can help flush the tracer out of the body more quickly.

Results
The scan should reveal normal kidney function for the patient’s age and medical status, as well as show normal relative position, size, configuration, and location of the kidneys. Initial blood flow images should reflect that blood circulation to both kidneys is equal. Patients whose images suggest a space-occupying lesion or obstruction may require other imaging procedures, such as CT or ultrasound, to provide more information. Also, if the kidneys appear to be abnormal in size, have an unusual contour, or are unusually positioned, other imaging procedures may be required.

Resources:
https://www.health.harvard.edu/fhg/diagnostics/radionuclide-scan-of-the-kidneys.shtml
http://www.enotes.com/nursing-encyclopedia/kidney-radionuclide-scan

Reblog this post [with Zemanta]