Categories
Ailmemts & Remedies

Kidney transplant

Introduction:
A kidney transplant is an operation that places a healthy kidney in your body. The transplanted kidney takes over the work of the two kidneys that failed, and you no longer need dialysis.

CLICK  & SEE
During a transplant, the surgeon places the new kidney in your lower abdomen and connects the artery and vein of the new kidney to your artery and vein. Often, the new kidney will start making urine as soon as your blood starts flowing through it. But sometimes it takes a few weeks to start working.

If you have advanced and permanent kidney failure, kidney transplantation may be the treatment option that allows you to live much like you lived before your kidneys failed. Since the 1950s, when the first kidney transplants were performed, much has been learned about how to prevent rejection and minimize the side effects of medicines.

But transplantation is not a cure; it’s an ongoing treatment that requires you to take medicines for the rest of your life. And the wait for a donated kidney can be years long.

Many transplanted kidneys come from donors who have died. Some come from a living family member. The wait for a new kidney can be long. People who have transplants must take drugs to keep their body from rejecting the new kidney for the rest of their lives.

A successful transplant takes a coordinated effort from your whole health care team, including your nephrologist, transplant surgeon, transplant coordinator, pharmacist, dietitian, and social worker. But the most important members of your health care team are you and your family. By learning about your treatment, you can work with your health care team to give yourself the best possible results, and you can lead a full, active life.

Around 40 per cent of patients with end-stage renal failure (ESRF) need a transplant which frees people from the need for dialysis treatments.

A successful kidney transplant has ten times the function of dialysis (for example ten times the ability to remove toxins and extra water from the blood). It means that transplant patients have a better quality of life, with more energy than they did on dialysis.

How transplants work:-
An assessment is necessary to determine whether your body will accept an available kidney. This may require several visits over four to six months, and all potential recipients must be healthy enough for surgery.

Although there is no age limit, few units will transplant patients over 70 years – unless very fit.

If a family member, partner or friend wants to donate a kidney, they will need to be evaluated for general health too.

If there is no potential living donor, you will need to register with hospital and be put on a national waiting list to receive a kidney from a deceased donor. but this varies considerably around the country. Kidneys can also be donated by strangers.

If there is a suitable living donor, the operation can be scheduled in advance, when it suits both sides. If you’re on a waiting list for a deceased donor kidney, as soon as it becomes available, you must go to the hospital quickly – where a test is carried out to check the kidney won’t be rejected. If it’s suitable, the transplant can proceed. The operation usually takes three to four hours.

A surgeon places the new kidney inside your lower abdomen and connects the artery and vein of the new kidney to your artery and vein. Your blood flows through the new kidney, which makes urine, just like your own kidneys did when they were healthy. Unless they are causing infection or high blood pressure, your own kidneys are left in place.

During the operation, the transplant kidney is inserted into the lower abdomen and connected to an artery and vein (to the leg). The blood flows through the new kidney, which makes urine, just like the old kidneys did when they were healthy. The old kidneys are usually left in place.

CLICK & SEE

Often the new kidney will start making urine as soon as blood starts flowing through it, but about one third of patients will require dialysis for around a week. Most patients leave hospital two weeks after the operation.

To prevent the immune system from seeing the new kidney as foreign and rejecting it, you’ll have to take drugs that turn off (or suppress) your immune response (immunosupressants). It’s important to understand the instructions for taking these medicines before leaving hospital, as missing the tablets for just 24 hours can cause rejection and the loss of the kidney.

Recovery From Surgery:-
As after any major surgery, you’ll probably feel sore and groggy when you wake up. However, many transplant recipients report feeling much better immediately after surgery. Even if you wake up feeling great, you’ll need to stay in the hospital for about a week to recover from surgery, and longer if you have any complications.

Posttransplant Care:-
Your body’s immune system is designed to keep you healthy by sensing “foreign invaders,” such as bacteria, and rejecting them. But your immune system will also sense that your new kidney is foreign. To keep your body from rejecting it, you’ll have to take drugs that turn off, or suppress, your immune response. You may have to take two or more of these immunosuppressant medicines, as well as medications to treat other health problems. Your health care team will help you learn what each pill is for and when to take it. Be sure that you understand the instructions for taking your medicines before you leave the hospital.

If you’ve been on hemodialysis, you’ll find that your posttransplant diet is much less restrictive. You can drink more fluids and eat many of the fruits and vegetables you were previously told to avoid. You may even need to gain a little weight, but be careful not to gain weight too quickly and avoid salty foods that can lead to high blood pressure

Rejection:-
You can help prevent rejection by taking your medicines and following your diet, but watching for signs of rejection—like fever or soreness in the area of the new kidney or a change in the amount of urine you make—is important. Report any such changes to your health care team.

Even if you do everything you’re supposed to do, your body may still reject the new kidney and you may need to go back on dialysis. Unless your health care team determines that you’re no longer a good candidate for transplantation, you can go back on the waiting list for another kidney.

Side Effects of Immunosuppressants:
Immunosuppressants can weaken your immune system, which can lead to infections. Some drugs may also change your appearance. Your face may get fuller; you may gain weight or develop acne or facial hair. Not all patients have these problems, though, and diet and makeup can help.

Immunosuppressants work by diminishing the ability of immune cells to function. In some patients, over long periods of time, this diminished immunity can increase the risk of developing cancer. Some immunosuppressants cause cataracts, diabetes, extra stomach acid, high blood pressure, and bone disease. When used over time, these drugs may also cause liver or kidney damage in a few patients.

Hope through Research:-
The NIDDK, through its Division of Kidney, Urologic, and Hematologic Diseases, supports several programs and studies devoted to improving treatment for patients with progressive kidney disease and permanent kidney failure, including patients who receive a transplanted kidney.

•The End-Stage Renal Disease Program promotes research to reduce medical problems from bone, blood, nervous system, metabolic, gastrointestinal, cardiovascular, and endocrine abnormalities in kidney failure and to improve the effectiveness of dialysis and transplantation. The program seeks to increase kidney graft and patient survival and to maximize quality of life.

•The NIH Organ/Tissue Transplant Center, located at the NIH Clinical Center in Bethesda, MD, is a collaborative project of NIH, the Walter Reed Army Medical Center, the Naval Medical Research Center, and the Diabetes Research Institute at the University of Miami. The site includes a state-of-the-art clinical transplant ward, operating facility, and outpatient clinic designed for the study of new drugs or techniques that may improve the success of organ and tissue transplants.

•The U.S. Renal Data System (USRDS) collects, analyzes, and distributes information about the use of dialysis and transplantation to treat kidney failure in the United States. The USRDS is funded directly by NIDDK in conjunction with the Centers for Medicare & Medicaid Services. The USRDS publishes an Annual Data Report, which characterizes the total population of people being treated for kidney failure; reports on incidence, prevalence, mortality rates, and trends over time; and develops data on the effects of various treatment modalities. The report also helps identify problems and opportunities for more focused special studies of renal research issues.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose

Resources:
http://www.topnews.in/health/kidney-transplant-patients-low-physical-activity-likely-die-early-211177
http://www.nlm.nih.gov/medlineplus/kidneytransplantation.html
http://www.kidney.niddk.nih.gov/kudiseases/pubs/transplant/
http://www.bbc.co.uk/health/physical_health/conditions/in_depth/kidneys/kidneys_transplant.shtml

Enhanced by Zemanta
Categories
Ailmemts & Remedies

Kidney dialysis

Introduction:
In order for blood to perform its essential functions of bringing nutrients and oxygen to the cells of the body, and carrying waste materials away from those cells, the chemical composition of the blood must be carefully controlled. Blood contains particles of many different sizes and types, including cells, proteins, dissolved ions, and organic waste products. Some of these particles, such as proteins like hemoglobin, are essential for the body. Others, such as urea (a waste product from protein metabolism), must be removed from the blood or they will accumulate and interfere with normal metabolic processes. Still other particles, including many of the simple ions dissolved in the blood, are required by the body in certain concentrations that must be tightly regulated, especially when the intake of these chemicals varies. The body has many different means of controlling the chemical composition of the blood. For instance, you learned in the “Iron Use and Storage in the Body: Ferritin and Molecular Representations” tutorial that the ferritin protein can help to control the amount of free iron in the blood. As you will discover in the tutorial entitled, “Blood, Sweat, and Buffers: pH Regulation During Exercise”, buffers dissolved in the blood can help regulate the blood’s pH. But the largest responsibility for maintaining the chemistry of the blood falls to the kidneys, a pair of organs located just behind the lining of the abdominal cavity. It is the job of the kidneys to remove the harmful particles from the blood and to regulate the blood’s ionic concentrations, while keeping the essential particles in the blood

CLICK & SEE THE PICTURES

Healthy kidneys clean the blood by removing excess fluid, salt and wastes. When they fail, harmful wastes build up, blood pressure may rise, and the body may retain excess fluid. When this happens, treatment – dialysis or a kidney transplant – is needed to replace the work of the failed kidneys, which is known as end-stage renal failure (ESRF).

There are three primary and two secondary types of dialysis: hemodialysis (primary), peritoneal dialysis (primary), hemofiltration (primary), hemodiafiltration (secondary), and intestinal dialysis (secondary).

Hemodialysis:
Haemodialysis (HD) is the most common method used to treat ESRF and has been available since the 1960s. Despite some advances in dialysis machines in recent years, HD is still a complicated and inconvenient therapy requiring a coordinated effort from a large healthcare team, including:

•GP
•Nephrologist (kidney doctor)
•Dialysis nurse
•Dialysis technician
•Dietitian
•Social worker
One important step before starting HD is a small operation to prepare a site on the body. One of the arteries in your arm is re-routed to join a vein, forming a fistula. Blood is removed from the fistula, cleaned and returned to it, allowing dialysis process to take place.

Needles are inserted into a fistula (the point of access to the bloodstream) at the start of HD. You may find this one of the hardest parts, although most people report getting used to them after a few sessions. If it’s painful, an anesthetic cream or spray can be applied to the skin.

CLICK & SEE

In HD, blood is allowed to flow, a small amount at a time, through a special filter (the ‘dialyser’ or ‘artificial kidney’) that removes wastes and extra fluids. The clean blood is then returned to your body via the fistula. This helps to keep the correct amount of water in the body, control blood pressure – and keep the proper balance of chemicals such as potassium, sodium and acid.

Most people have HD three times a week for three to five hours, with a morning, afternoon or evening ‘slot’; depending on availability and capacity at a dialysis unit, usually in a large hospital. Some receive it at a smaller satellite unit nearer home, and a few have HD in their own homes.

By learning about the treatment, and working with your healthcare team, it’s possible to have a full, active life

Peritoneal dialysis:
Peritoneal dialysis (PD) became an alternative to HD in the 1980s, with many preferring the independence it brings them.

It means you don’t have to have dialysis sessions at a unit, but can give treatments at home, at work or on holiday. Like HD, by learning about the treatment, and working with the medical team, it’s possible to have a full and active life.

CLICK & SEE

In PD, a soft tube called a catheter is used to fill the abdomen with a cleansing liquid called dialysis solution. The abdominal cavity is lined with a layer called the peritoneum. Waste products and extra fluid (and salt) then pass through the peritoneum from the blood into the dialysis solution. They then leave the body when the dialysis solution is drained. This used solution is then thrown away.

The process of draining and filling is called an ‘exchange’ and takes about 30 to 40 minutes. The period the dialysis solution is in the abdomen is called the ‘dwell time’. A typical schedule is four exchanges a day, each with a dwell time of four to eight hours.

There are many forms of PD. One doesn’t even require a machine and it’s possible to walk around with the dialysis solution in your abdomen. Talk to your specialist about what’s best for your particular situation.

Whatever form is chosen, an operation is needed to have the soft catheter placed in the abdomen, which will carry the dialysis solution in and out of the abdomen. It’s usually inserted two weeks before dialysis proceeds, to allow scar tissue to build up that will hold it in place.

Hemofiltration:
Hemofiltration is a similar treatment to hemodialysis, but it makes use of a different principle. The blood is pumped through a dialyzer or “hemofilter” as in dialysis, but no dialysate is used. A pressure gradient is applied; as a result, water moves across the very permeable membrane rapidly, “dragging” along with it many dissolved substances, importantly ones with large molecular weights, which are cleared less well by hemodialysis. Salts and water lost from the blood during this process are replaced with a “substitution fluid” that is infused into the extracorporeal circuit during the treatment. Hemodiafiltration is a term used to describe several methods of combining hemodialysis and hemofiltration in one process.

Hemodiafiltration:
Hemodialfiltration is a combination of hemodialysis and hemofiltration. In theory, this technique offers the advantages of both hemodialysis and hemofiltration.

CLICK & SEE

Intestinal dialysis:
In intestinal dialysis, the diet is supplemented with soluble fibres such as acacia fibre, which is digested by bacteria in the colon. This bacterial growth increases the amount of nitrogen that is eliminated in fecal waste.  An alternative approach utilizes the ingestion of 1 to 1.5 liters of non-absorbable solutions of polyethylene glycol or mannitol every fourth hour.

Which is better?
Neither technique ‘cures’ ESRF, as they only provide about five per cent of normal kidney function. In other words, they control kidney failure to an extent. It’s hard to state which technique is ‘better’ for which patient, as both have pros and cons. Many patients will have both in their continuing treatment.

Living with dialysis
Adjusting to the effects of ESRF and the time spent on dialysis can be difficult. Aside from the ‘lost time’ (dialysis can take six to eight hours a day) most patients feel they have less energy. Many need to make changes in their work or home life, and can feel depressed when starting the process, or after several months of treatment. It’s good to talk with a social worker, nurse or doctor as this is a common problem that can often be treated effectively.

If you’re feeling well, your kidney specialist should measure the effectiveness of the dialysis with blood tests at least once a month in HD, and once every three months in PD.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose
Resources:
http://www.bbc.co.uk/health/physical_health/conditions/in_depth/kidneys/kidneys_dialysis.shtml
http://en.wikipedia.org/wiki/Dialysis
http://www.chemistry.wustl.edu/~edudev/LabTutorials/Dialysis/Kidneys.html

Enhanced by Zemanta
Categories
Healthy Tips

Daily Dose of Baking Soda Can Save Kidney

[amazon_link asins=’B002SKVZIQ,B0005ZXPY8,B00LO1Y1AO,B00K1JFC0S’ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’07d13f28-4fe8-11e7-ac82-8fdf989de8df’]

A daily dose baking soda or sodium bicarbonate, used in baking, cleaning, acid indigestion, sunburn and more slows the decline of kidney function in some patients with advanced chronic kidney disease (CKD), a new study has found.

“This cheap and simple strategy also improves patients’ nutritional status, and has the potential of translating into significant economic, quality of life, and clinical outcome benefits,” comments Magdi Yaqoob, of the Royal London Hospital (RLH), who led the study.

Researchers studied 134 patients with advanced CKD and low bicarbonate levels, also called metabolic acidosis. One group received a small daily dose of sodium bicarbonate in tablet form, in addition to their usual care.

For this group, the rate of decline in kidney function was greatly reduced — about two-thirds slower than in patients. “In fact, in patients taking sodium bicarbonate, the rate of decline in kidney function was similar to the normal age-related decline,” says Yaqoob.

Rapid progression of kidney disease occurred in just nine percent of patients taking sodium bicarbonate, compared to 45 percent of the other group. Patients taking sodium bicarbonate were also less likely to develop end-stage renal disease (ESRD) requiring dialysis.

Patients taking sodium bicarbonate also had improvement in several measures of nutrition. Although their sodium levels went up, this didn’t lead to any problems with increased blood pressure.

Low bicarbonate levels are common in patients with CKD and can lead to a wide range of other problems. “This is the first randomised controlled study of its kind,” says Yaqoob.

“A simple remedy like sodium bicarbonate (baking soda), when used appropriately, can be very effective,” he adds, according to an RLH release.

These findings were published in the Journal of the American Society of Nephrology (JASN).

Source: The Times Of India

Reblog this post [with Zemanta]
Categories
Diagnonistic Test

Urinalysis

[amazon_link asins=’B00XIKQCJC,0803639201,B01M2A8XP3,B073DMKR2K,B01N0XZDBT,B01KMS7GKQ,B000S5ZGP6,B013PJIVTE,B013TRAM3U’ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’913173ca-b14b-11e7-8bb6-3544deee4345′]

Definition :
Urinalysis is the physical, chemical, and microscopic examination of urine. It involves a number of tests to detect and measure various compounds that pass through the urine.

CLICK & SEE

It is a routine examination of the urine for cells, tiny structures, bacteria, and chemicals that suggest various illnesses. A urine culture attempts to grow large numbers of bacteria from a urine sample to diagnose a bacterial urine infection.


How the Test is Performed

A urine sample is needed. Your health care provider will tell you what type of urine sample is needed. For information on how to collect a urine sample, see:

*24-hour urine collection
*Clean catch urine specimen

There are three basic steps to a complete urinalysis:

1. Physical color and appearance:

*What does the urine look like to the naked eye?
*Is it clear or cloudy?
*Is it pale or dark yellow or another color?

The urine specific gravity test reveals how concentrated or dilute the urine is.

2.Microscopic appearance:

The urine sample is examined under a microscope. This is done to look at cells, urine crystals, mucus, and other substances, and to identify any bacteria or other microorganisms that might be present.

3,Chemical appearance:

A special stick (“dipstick”) tests for various substances in the urine. The stick contains little pads of chemicals that change color when they come in contact with the substances of interest.

Click to See : Urine chemistry

How to Prepare for the Test:
For a regular urinalysis, you are asked to urinate briefly into a plastic cup. When urine is collected for a urine culture, you must provide a “clean catch” sample – one that is not contaminated by skin cells and skin bacteria. This is so the doctor can obtain a sample of urine from inside your bladder, where normally there should be no bacteria. In contrast, there are many bacteria on the skin of a penis or in a vagina. The trick (harder for a woman than a man) is to pee directly into a sterile container without having the stream of urine first touch your skin or the nonsterile tissues of the vagina.

To collect a clean catch sample, you are given a sterile plastic container and asked to wipe off the area around your urethra (where urine exits) with an antiseptic cloth. For women, it’s also helpful to hold the two labia (outer walls) of the vagina apart with one hand when you urinate, so that the stream of urine passes directly into the sterile container. Since the first flow of urine is most likely to be contaminated by bacteria from around the opening of the urethra, first urinate for a moment into the toilet and then use the cup to collect the “middle” portion of your urine stream.

Certain medicines change the color of urine, but this is not a sign of disease. Your doctor may tell you to stop taking any medicines that can affect test results.

Medicines that can change your urine color include:

*Chloroquine
*Iron supplements
*Levodopa
*Nitrofurantoin
*Phenazopyridine
*Phenothiazines
*Phenytoin
*Riboflavin
*Triamterene

Why the Test is Performed :-

A urinalysis may be done:

As part of a routine medical exam to screen for early signs of disease
If you have signs of diabetes or kidney disease, or to monitor you if you are being treated for these conditions
To check for blood in the urine
To diagnose a urinary tract infection
Additional conditions under which the test may be performed:

*Acute bilateral obstructive uropathy
*Acute nephritic syndrome
*Acute tubular necrosis
*Acute unilateral obstructive uropathy
*Alkalosis
*Alport syndrome
*Analgesic nephropathy
*Anorexia nervosa
*Atheroembolic renal disease
*Atrial myxoma
*Bladder stones
*Chronic bilateral obstructive uropathy
*Chronic glomerulonephritis
*Chronic or recurrent urinary tract infection
*Chronic renal failure
*Chronic unilateral obstructive uropathy
*Chronic urethritis
*Complicated UTI (pyelonephritis)
*Congenital nephrotic syndrome
*Cystinuria
*Delirium
*Dementia
*Dementia due to metabolic causes
*Diabetes insipidus — central
*Diabetic nephropathy/sclerosis
*Enuresis
*Epididymitis
*Failure to thrive
*Focal segmental glomerulosclerosis
*Goodpasture’s syndrome
*Heart failure
*Hemolytic-uremic syndrome (HUS)
*Henoch-Schonlein purpura
*Insulin-dependent diabetes (IDD)
*IgA nephropathy (Berger’s disease)
*Injury of the kidney and ureter
*Interstitial nephritis
*Irritable bladder
*Left-sided heart failure
*Lupus nephritis
*Malignant hypertension (arteriolar nephrosclerosis)
*Medullary cystic kidney disease
*Membranoproliferative GN I
*Membranoproliferative GN II
*Membranous nephropathy
*Myelomeningocele (children)
*Necrotizing vasculitis
*Nephrotic syndrome
*Noninsulin-dependent diabetes (NIDD)
*Orchitis
*Ovarian cancer
*Paroxysmal nocturnal hemoglobinuria (PNH)
*Polycystic kidney disease
*Post-streptococcal GN
*Prerenal azotemia
*Primary amyloid
*Prostate cancer
*Prostatitis, acute
*Prostatitis, chronic
*Prostatitis, non-bacterial
*Pyelonephritis; acute
*Rapidly progressive (crescentic) glomerulonephritis
*Reflux nephropathy
*Renal papillary necrosis
*Renal tubular acidosis; distal
*Renal tubular acidosis; proximal
*Renal vein thrombosis
*Retrograde ejaculation
*Rhabdomyolysis
*Right-sided heart failure
*Secondary systemic amyloid
*Stress incontinence
*Systemic lupus erythematosus
*Systemic sclerosis (scleroderma)
*Thrombotic thrombocytopenic purpura
*Traumatic injury of the bladder and urethra
*Ureterocele
*Urethral stricture
*Urethritis
*Wegener’s granulomatosis
*Wilms’ tumor

RESULTS:

Normal Results
Normal urine may vary in color from almost colorless to dark yellow. Some foods (like beets and blackberries) may turn the urine a red color.

Usually, glucose, ketones, protein, bilirubin, are not detectable in urine. The following are not normally found in urine:

*Hemoglobin
*Nitrites
*Red blood cells
*White blood cells
Normal value ranges may vary slightly among different laboratories. Talk to your doctor about the meaning of your specific test results.

What Abnormal Results Mean
For specific results, see the individual test article:

*Bilirubin – urine
*Glucose – urine
*Protein – urine
*Red blood cells in urine test
*Urine ketones
*Urine pH
*Urine protein
*Urine specific gravity

How long is it before the result of the test is known?
Your doctor might be able to do a urinalysis in his or her office and can give you the results within 10-15 minutes. If the urine is sent to a separate laboratory, it usually takes several hours to get results, so you may not hear from your doctor until the next day. A urine culture takes 24 to 72 hours to complete, so you may not hear results for several days.

Resources:
https://www.health.harvard.edu/fhg/diagnostics/urinalysis.shtml
http://www.nlm.nih.gov/medlineplus/ency/article/003579.htm

http://www.hallvet.com.au/services/urinalysis.html

Reblog this post [with Zemanta]
css.php