Categories
News on Health & Science

Jet Lag to be History

[amazon_link asins=’B01MSX8MG0,B01M4I85R5′ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’9b5844c4-f3fc-11e6-98ca-c75311b7bd5b’]

Scripps Research scientists say that they have determined the molecular structure of a plant photolyase protein, which is very similar  to the two proteins that control the circadian clock in humans and other mammals, moving a step closer to making jet lag history.

CLICK & SEE

The researchers claim that their study has even enabled them to test how structural changes affect the function of such proteins.

“The plant photolyase structure provides a much better model to use to study how the cryptochrome proteins in the human clock function than we have ever had before,” says Dr. Kenichi Hitomi, a postdoctoral research fellow at Scripps Research.

“It’s like knowing for the first time where the engine is in a car. When you know what the most important parts of the protein are, then you can begin to figure out how it functions,” the researchers added.

Dr. Elizabeth Getzoff, professor in the Department of Molecular Biology and member of The Skaggs Institute for Chemical Biology at Scripps Research, says that understanding how these proteins work may be helpful in fixing the clock when needed.

“In addition to decoding how the clock works, a long-term goal is to develop a drug to help people who can’t reset their clock when they need to, like people who work night shifts or travel long distances. Having the three-dimensional protein is a great step forward in both of those pursuits,” she says.

Working in collaboration with researchers from Scripps Research and from other institutions, including two universities in Japan, Hitomi studied Arabidopsis thaliana, a plant native to Europe and Asia that has one of the smallest genomes of all plants.

The researchers point out that just like all other plants, this plant also contains proteins known as photolyases, which use blue light to repair DNA damage induced by ultraviolet light.

They say that humans and mammals possess a homologous protein known as cryptochrome that modulates the circadian clock.

Getzoff says: “This is an amazing, and very puzzling, family of proteins, because they do one thing in plants and quite a different thing in mammals, yet these cousins all have the same structure and need the same cofactor, or chemical compound, to become activated.”

Hitomi adds: “All of these proteins were probably originally responses to sunlight. Sunlight causes DNA damage, so plants need to repair this damage, and they also need to respond to sunlight and seasons for growth and flowering. The human clock is set by exposure to sunlight, but also by when we eat, sleep and exercise.”

Hitomi and his colleagues set about producing proteins from the Arabidopsis thaliana genes that produce two related photolyase enzymes. These genes had been cloned earlier in the laboratory of co-author Dr Takeshi Todo of Kyoto University.

The researchers moved the gene from the plant into E coli bacteria to produce a lot of the protein, and later crystallized it to determine the atomic structure by using X-ray diffraction.

The researchers then produced a variety of mutant proteins in order to test the functional structure of the enzymes.

“We can now look at things that are the same and different between human and mouse cryptochromes and plant photolyases. Our results provide a detailed, comparative framework for biological investigations of both of these proteins and their functions,” says Hitomi.

He believes that his team’s findings may form the basis of drugs that can ease jet lag and regulate drug metabolism, as well as help better understand some fascinating circadian clock disorders that have been found in mice and man.

The study has been published in The Proceedings of the National Academy of Sciences.

Sources:The Times Of India

Categories
News on Health & Science

Breathless? Blame your genes

[amazon_link asins=’B004DES92U,B00MYFAMIY,B00005NC66,B01KGR17ZS,0792844807,0062389025,B00KX44U90,B0021R783W,B00GRA7M2G’ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’46faecf1-2fc2-11e7-808b-812baace0c88′]

Scientists have identified a gene variant responsible for the higher incidence of coronary artery blockages in Indians.

click & see
Researchers in Bangalore have zeroed in on a gene that may explain why an unusually high number of Indians are prone to coronary artery disease (CAD), the biggest killer among various ailments that afflict the human heart. The risk of CAD is said to be several times higher in Indians than in the others.

CAD is a condition in which plaque builds up inside the coronary artery vessels that supply the heart muscle with oxygen-rich blood.

Led by Arindam Maitra, scientists at the Thrombosis Research Institute — attached to Narayana Hrudayalaya in Bangalore — found that people who harbour a particular variant of the gene rs10757278 are over one and half times more prone to CAD than those who do not have it.

The gene in question is located on the short arm of chromosome 9 (of the 23 pairs that a human cell contains, received from each of the parents). The gene variant was earlier found to put other populations at risk too, but to a much lesser degree.

Maitra, however, was quick to add that this is not the only gene associated with CAD. More genes are suspected to contribute to the inherited risk of CAD. Yet very little is known about them. “This is only the tip of an iceberg,” said Maitra whose team, early last year, unravelled the role played by another gene (IL-6) in the early onset of CAD in Indians.

CAD is multigenic and complex. Being multigenic, no single gene, acting in isolation, will lead to the disease. As a result, people may bear two copies of the risk gene variant but lack the other relevant genetic risk factors which, in combination, might lead to CAD.

And, being complex, CAD is caused by a combination of the presence of the genetic risk factors as well as exposure to risk-conferring environmental influences like diet or lifestyle, said Maitra.

The study, scheduled to appear soon in the Journal of Genetics, looked for the presence of the gene variant in 154 CAD patients undergoing treatment in Bangalore and Mumbai. Similar studies were conducted on an equal number of healthy people.

Patients with two copies of the risk-associated variant — rs10757278G — were found to be far more vulnerable than those with one copy or none at all. Nearly one-third of the patients with three or more diseased artery vessels had two copies of rs10757278G, whereas the frequency was one in eight in the patients who lacked them.

It was also found that CAD sets in two years earlier in those who bear the risk gene variants than those who don’t.

The risk of CAD in Indians is about 3-4 times higher than in the Caucasians, six times higher than in the Chinese and 20 times higher than in the Japanese.

Independent experts, however, dismiss the study because of the small sample size. “Genomic studies are generally conducted with thousands of volunteers, as there is always a chance of getting false positive results otherwise,” said Dorairaj Prabharakan, who heads the non-profit Centre for Chronic Disease Control in New Delhi .

While gene studies may help understand the mechanisms of the disease better, it is quite irrelevant from a clinician’s point of view. Only 10 per cent of CAD could be solely the result of genetic factors, Prabhakaran stressed. The risk factors associated with nearly two-third of CAD patients are smoking and elevated blood fat levels. Another 20 per cent of cases are due to diabetes and hypertension.

Like Prabhakaran, Prashant Joshi, a doctor at the Government Medical College, Nagpur, too feels that the sample size is too low. But, he added, it is very important to know which genes make Indians more vulnerable to CAD. “The threshold of the risk factors in Indians is very low compared with their counterparts in the West,” Joshi said. In other words, Indians with lower cholesterol, diabetes and BP levels, or who smoke less than their counterparts abroad, are more prone to CAD. “Genes are certainly playing a role here,” Joshi said.

Maitra justified the small sample size, saying it was only a pilot study. But, he added, a larger study is already planned.

Sources: The Telegraph (Kolkata, India)

Categories
Diagnonistic Test Health Problems & Solutions

Cardiac Catheterization

[amazon_link asins=’0323340393,1451127405,0323476716,1605478857,081512614X,1572225378,032308057X,1416039996,0323079024′ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’62c28cfe-b0f6-11e7-aa33-4b0807246ed5′]

Alternative Name: Catheterization – cardiac; Heart catheterization

Definition:
Cardiac catheterization with coronary angiogram takes pictures of the blood vessels in your heart, to evaluate the health of your heart and detect any narrowing of the blood vessels or other problems. The catheterization is performed by a cardiologist (or sometimes a radiologist) who is a specialist in doing this type of test.
CLICK & SEE
This process involves passing a catheter (a thin flexible tube) into the right or left side of the heart. In general, this procedure is performed to obtain diagnostic information about the heart or its blood vessels or to provide treatment in certain types of heart conditions.

Cardiac catheterization can be used to determine pressure and blood flow in the heart’s chambers, collect blood samples from the heart, and examine the arteries of the heart with an x-ray technique called fluoroscopy. Fluoroscopy provides immediate (“real-time”) visualization of the x-ray images on a screen and provides a permanent record of the procedure.
Why the Test is Performed ?
Cardiac catheterization is usually performed to evaluate heart valves, heart function and blood supply, or heart abnormalities in newborns. It may also be used to determine the need for heart surgery.

Therapeutic catheterization may be used to repair certain types of heart defects, open a stenotic heart valve, and open blocked arteries or grafts in the heart.
How the Test is Performed:
You lie on your back as a medical technician connects you to a heart monitor. An intravenous (IV) line is inserted into one of the blood vessels in your arm, neck, or groin after the site has been cleansed and numbed with a local anesthetic.. You may be given a sedative through the IV so that you are relaxed during the test.

First, the doctor injects a local anesthetic into the skin. This might sting momentarily. After the skin is numb, the cardiologist inserts a catheter (a thin, hollow plastic tube) into a large artery-usually in your groin but possibly in your arm or wrist.

Using live x-rays displayed on a video monitor as a guide, your doctor moves the catheter along the artery until it reaches your aorta (the large blood vessel that carries blood from your heart to the rest of your body). The tip of the catheter is pushed up the aorta until it reaches the heart and then gently pushed into the coronary arteries that supply blood directly to your heart muscle.When the tip of the catheter reaches one of the coronary arteries, the doctor injects contrast dye through the catheter. The dye illuminates the artery, allowing the doctor to see if it is blocked or narrowed. The procedure is repeated to visualize the other coronary arteries.

X-ray pictures are taken while the dye travels down the arteries. The arteries look like thick lines on the x-ray; a narrowing or blockage in an artery appears as a thinner line (see Figure 1). Your doctor might also inject some contrast medium into the left ventricle of your heart to show how forcefully your heart is pumping. The entire procedure usually takes from one to several hours.

How you Prepare for the Test:
Food and fluid are restricted 6 to 8 hours before the test. The procedure takes place in the hospital and you will be asked to wear a hospital gown. Sometimes, admission the night before the test is required. Otherwise, you will be admitted as an outpatient or an inpatient the morning of the procedure.

Your health care provider should explain the procedure and its risks. A witnessed, signed consent for the procedure is required.

Tell your doctor if you are allergic to seafood, if you have had a bad reaction to contrast material in the past, if you are taking Viagra, or if you might be pregnant.

During this procedure, local anesthetics (numbing agents) are used to minimize pain. Tell the cardiologist if you have ever had an allergic reaction to a local anesthetic or to contrast dyes. Also let your doctor know if you could be pregnant, since the x-rays used during this procedure can damage a fetus.

. Tell the cardiologist if you’re taking a nonsteroidal anti-inflammatory drug (NSAID) or other medicines that affect blood clotting and could increase the chance of bleeding from the procedure. You should also tell your doctor if you take insulin shots or blood sugar-lowering pills so that you can take steps to avoid dangerously low blood sugar, or hypoglycemia.

How the Test Will Feel?
The study is carried out in a laboratory by a trained cardiologist or radiologist and technicians or nurses.

You will be awake and able to follow instructions during the catheterization. A mild sedative is usually given 30 minutes before the procedure to help you relax. The procedure may last from 1 to several hours.

You may feel some discomfort at the site where the IV is placed. Local anesthesia will be used to numb the site, so the only sensation should be one of pressure at the site. You may experience some discomfort from having to remain still for a long time.

After the test, the catheter is removed. You might feel a firm pressure at the insertion site, used to prevent bleeding. If the IV is placed in your groin, you will usually be asked to lie flat on your back for a few hours after the test to avoid bleeding. This may cause some mild back discomfort.

Risk Factors:
There are several potential risks. First, the catheter can irritate the heart, in rare cases causing a disturbance in the heart rhythm. Should this happen, the doctor can immediately use devices and medicines to restore a normal heart rhythm. The catheter occasionally can cause the coronary artery to go into spasm, temporarily reducing the blood flow and causing chest pain. For this reason, alert the doctors and nurses if you develop any chest discomfort, trouble breathing, or any other problem during the test.

In addition, the contrast medium can sometimes impair kidney function. This effect is almost always temporary, but some people have permanent damage. Another possible complication is bleeding at the place where the catheter was inserted. If blood collects under the skin, it can form a large painful bruise called a hematoma. This usually resolves on its own, without requiring additional treatment. Occasionally, people are allergic to the contrast dye and develop a rash, hives, or difficulty breathing after the dye is injected. If this should occur, the medical staff in the catheterization laboratory have medicines available to treat the allergic reaction.

The amount of radiation from this test is too small to be likely to cause harm.
Cardiac catheterization carries a slightly increased risk when compared with other heart tests. However, the test is very safe when performed by an experienced team.

Generally, the risk of serious complications ranges from 1 in 1,000 to 1 in 500. The risks include the following:
*Cardiac arrhythmias
*Cardiac tamponade
*Trauma to the artery caused by hematoma
*Low blood pressure
*Reaction to contrast medium
*Hemorrhage
*Stroke
*Heart attack
Must you do anything special after the test is over?
You should lie flat for a few hours after this procedure. Often, a small plug or stitch is used to prevent bleeding from the artery that was entered to perform the catheterization. If you received a sedative, you might feel sleepy and shouldn’t drive or drink alcohol for one day after the catheterization.

What Abnormal Results Mean

The procedure can identify heart defects or disease, such as coronary artery disease, valve problems, ventricular aneurysms, or heart enlargement.

The procedure also may be performed for the following:
*Primary pulmonary hypertension
*Pulmonary valve stenosis
*Pulmonary embolism
*Tetralogy of Fallot
*Transposition of the great vessels
*Tricuspid regurgitation
*Ventricular septal defect

How long is it before the result of the test is known?
Your doctor will have your results as soon as the test is completed. In particular, the doctor can tell you if you have any blockages in the coronary arteries, how many and how severe they are, and the best way to treat them. In some cases, your doctor is even able to remove any blockages immediately by performing an intervention known as a coronary angioplasty, a procedure that uses a tiny inflatable balloon to reopen the artery.

Resources:
https://www.health.harvard.edu/fhg/diagnostics/cardiac-catheterization.shtml
http://www.nlm.nih.gov/medlineplus/ency/article/003419.htm

Reblog this post [with Zemanta]
Categories
Featured

Gene to Spot Early Heart Risk

[amazon_link asins=’B0719K18WS,1501135910,3838325419,B01NBJ10OH,B072DX95W4,3642724795,B071YB5CZT,B01CQ3E6HG,B013GWC1KA’ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’b378337b-6397-11e7-8d41-1d43fb719969′]

A US research team led by an Indian-origin doctor has pinpointed a gene that may help identify people who are at risk of suffering a heart attack before they turn 40.

Cardiologist Svati Shah at the Duke University School of Medicine and her colleagues have shown that a variant of the gene called NPY makes people susceptible to early coronary artery disease.

Scientists have known for years that some people are at risk of developing coronary artery disease even in their 30s and that this condition is inherited. But no one had succeeded in identifying the genes involved.

The Duke researchers examined genetic sequences from individuals across 920 families and found that the earliest age of onset of coronary artery disease was associated with a specific variant of the NPY gene.

The researchers are hoping their discovery leads to genetic tests that will allow them to find young people at risk of early heart disease and get them to change their diet or lifestyle to reduce the risk of heart attacks.

“These young patients are a vulnerable population, but they are particularly hard to identify,” said Shah, the lead author of a research paper on the discovery published yesterday in the journal Public Library of Science Genetics. “Such genetic findings may help us in future to identify these patients prior to the development or coronary artery disease or their first heart attack.”

The connection between the gene and early heart disease was even stronger in patients with heart disease before the age of 37. “If a person has the NPY gene variants in one of two copies from the mother and father, then he/she may develop coronary disease earlier,” said Elizabeth Hauser, associate professor of medical genetics at the Duke University.

Studies on mice have confirmed that the NPY gene and its protein are involved in promoting atherosclerosis — the buildup of deposits along walls of the arteries that can choke blood flow to the heart and raise risk of a heart attack.

The Duke team’s work has shown that variants of the NPY gene can be transmitted from generation to generation across a population of patients susceptible to early onset coronary artery disease.

This gene makes an important protein in the body that regulates appetite and feeding behaviour, in addition to other functions. “If you had one or two copies of this version of the gene, there could be a change in NPY level,” Shah said.

Sources: The Telegraph (Kolkata, India)

Reblog this post [with Zemanta]
Categories
Ailmemts & Remedies

Autism

Prominent characteristics of the syndrome incl...
Image via Wikipedia

Definition:
Autism is a brain development disorder that is characterized by impaired social interaction and communication, and restricted and repetitive behavior, all starting before a child is three years old. This set of signs distinguishes autism from milder autism spectrum disorders (ASD) such as pervasive developmental disorder not otherwise specified (PDD-NOS).

..CLICK & SEE

Autism has a strong genetic basis, although the genetics of autism are complex and it is unclear whether ASD is explained more by multigene interactions or by rare mutations. In rare cases, autism is strongly associated with agents that cause birth defects. Other proposed causes, such as childhood vaccines, are controversial; the vaccine hypotheses lack convincing scientific evidence. Most recent reviews estimate a prevalence of one to two cases per 1,000 people for autism, and about six per 1,000 for ASD, with ASD averaging a 4.3:1 male-to-female ratio. The number of people known to have autism has increased dramatically since the 1980s, at least partly as a result of changes in diagnostic practice; the question of whether actual prevalence has increased is unresolved.

Autism causes children to experience the world differently from the way most other children do. It’s hard for people with autism to talk with other people and express themselves using words. Some people who have autism keep to themselves and many can’t communicate without special help.

They also may react to what’s going on around them in unusual ways. Normal sounds may really bother someone with autism — so much so that the person covers his or her ears. Being touched, even in a gentle way, may feel uncomfortable.

Children with autism often can’t make connections that other kids make easily. For example, when someone smiles, you
know the smiling person is happy or being friendly. But a child with autism may have trouble connecting that smile with the person’s happy feelings.

A child who has autism also has trouble linking words with their meanings. Imagine trying to understand what someone is saying if you didn’t know what their words really meant. It is doubly frustrating then if a child can’t come up with the right words to express his or her own thoughts.

Autism causes children to act in unusual ways. They might flap their hands, say certain words over and over, have temper tantrums, or play only with one particular toy. Most kids with autism don’t like changes in routines. They like to stay on a schedule that is always the same. They also may insist that their toys or other objects be arranged a certain way and get upset if these items are moved or disturbed.

If someone has autism, his or her brain has trouble with an important job: making sense of the world. Every day, your brain interprets the sights, sounds, smells, and other sensations that you experience. If your brain couldn’t help you understand these things, you would have trouble functioning, talking, going to work or school, and doing other everyday things. People can be mildly affected by autism, so that they only have a little trouble in life, or they can be very affected, so that they need a lot of help.

Causes:
It has long been presumed that there is a common cause at the genetic, cognitive, and neural levels for autism’s characteristic triad of symptoms. However, there is increasing suspicion that autism is instead a complex disorder whose core aspects have distinct causes that often co-occur.

Autism has a strong genetic basis, although the genetics of autism are complex and it is unclear whether ASD is explained more by multigene interactions or by rare mutations with major effects. Complexity arises due to interactions among multiple genes, the environment, and epigenetic factors which do not change DNA but are heritable and influence gene expression. Early studies of twins estimated heritability explains more than 90% of the risk of autism, assuming a shared environment and no other genetic or medical syndromes. However, most of the mutations that increase autism risk have not been identified. Typically, autism cannot be traced to a Mendelian (single-gene) mutation or to a single chromosome abnormality like Angelman syndrome or fragile X syndrome, and none of the genetic syndromes associated with ASDs has been shown to selectively cause ASD. Numerous candidate genes have been located, with only small effects attributable to any particular gene. The large number of autistic individuals with unaffected family members may result from copy number variations—spontaneous deletions or duplications in genetic material during meiosis. Hence, a substantial fraction of autism cases may be traceable to genetic causes that are highly heritable but not inherited: that is, the mutation that causes the autism is not present in the parental genome.

Gene replacement studies in mice suggest that autistic symptoms are closely related to later developmental steps that depend on activity in synapses and on activity-dependent changes, and that the symptoms may be reversed or reduced by replacing or modulating gene function after birth. All known teratogens (agents that cause birth defects) related to the risk of autism appear to act during the first eight weeks from conception, and though this does not exclude the possibility that autism can be initiated or affected later, it is strong evidence that autism arises very early in development. Although evidence for other environmental causes is anecdotal and has not been confirmed by reliable studies, extensive searches are underway. Environmental factors that have been claimed to contribute to or exacerbate autism, or may be important in future research, include certain foods, infectious disease, heavy metals, solvents, diesel exhaust, PCBs, phthalates and phenols used in plastic products, pesticides, brominated flame retardants, alcohol, smoking, illicit drugs, vaccines, and prenatal stress. Although parents may first become aware of autistic symptoms in their child around the time of a routine vaccination (and parental concern about vaccines has led to a decreasing uptake of childhood immunizations and an increasing likelihood of measles outbreaks), there is overwhelming scientific evidence showing no causal association between the measles-mumps-rubella vaccine and autism, and no scientific evidence that the vaccine preservative thiomersal helps cause autism.

Despite extensive investigation, how autism occurs is not well understood. Its mechanism can be divided into two areas: the pathophysiology of brain structures and processes associated with autism, and the neuropsychological linkages between brain structures and behaviors. The behaviors appear to have multiple pathophysiologies.

Autism affects about 1 in every 150 people, but no one knows what causes it. Some scientists think that some children might be more likely to get autism because it or similar disorders run in their families. Knowing the exact cause of autism is hard because the human brain is very complicated.

The brain contains over 100 billion nerve cells called neurons. Each neuron may have hundreds or thousands of connections to other nerve cells in the brain and body. The connections (which are made by releasing neurotransmitters) let different neurons in different areas of the brain — areas that help you see, feel, move, remember, and much more — work together.

For some reason, some of the cells and connections in the brain of a child with autism — especially those that affect communication, emotions, and senses — don’t develop properly or get damaged. Scientists are still trying to understand how and why this happens.

Symptoms:
……...CLICK & SEE
Core symptoms:
The severity of symptoms varies greatly between individuals, but all people with autism have some core symptoms in the areas of:

Social interactions and relationships. Symptoms may include:
*Significant problems developing nonverbal communication skills, such as eye-to-eye gazing, facial expressions, and body posture.

*Failure to establish friendships with children the same age.

*Lack of interest in sharing enjoyment, interests, or achievements with other people.

*Lack of empathy. People with autism may have difficulty understanding another person’s feelings, such as pain or sorrow.

Verbal and nonverbal communication. Symptoms may include:

*Delay in, or lack of, learning to talk. As many as 40% of people with autism never speak.1

*Problems taking steps to start a conversation. Also, people with autism have difficulties continuing a conversation after it has begun.

*Stereotyped and repetitive use of language. People with autism often repeat over and over a phrase they have heard previously (echolalia).

*Difficulty understanding their listener’s perspective. For example, a person with autism may not understand that someone is using humor. They may interpret the communication word for word and fail to catch the implied meaning.

Limited interests in activities or play. Symptoms may include:
*An unusual focus on pieces. Younger children with autism often focus on parts of toys, such as the wheels on a car, rather than playing with the entire toy.

*Preoccupation with certain topics. For example, older children and adults may be fascinated by video games, trading cards, or license plates.

*A need for sameness and routines. For example, a child with autism may always need to eat bread before salad and insist on driving the same route every day to school.

*Stereotyped behaviors. These may include body rocking and hand flapping.

Symptoms during childhood
Symptoms of autism are usually noticed first by parents and other caregivers sometime during the child’s first 3 years. Although autism is present at birth (congenital), signs of the disorder can be difficult to identify or diagnose during infancy. Parents often become concerned when their toddler does not like to be held; does not seem interested in playing certain games, such as peekaboo; and does not begin to talk. Sometimes, a child will start to talk at the same time as other children the same age, then lose his or her language skills. They also may be confused about their child’s hearing abilities. It often seems that a child with autism does not hear, yet at other times, he or she may appear to hear a distant background noise, such as the whistle of a train.

With early and intensive treatment, most children improve their ability to relate to others, communicate, and help themselves as they grow older. Contrary to popular myths about children with autism, very few are completely socially isolated or “live in a world of their own.”

Symptoms during teen years:
During the teen years, the patterns of behavior often change. Many teens gain skills but still lag behind in their ability to relate to and understand others. Puberty and emerging sexuality may be more difficult for teens who have autism than for others this age. Teens are at an increased risk for developing problems related to depression, anxiety, and epilepsy.

Symptoms in adulthood:
Some adults with autism are able to work and live on their own. The degree to which an adult with autism can lead an independent life is related to intelligence and ability to communicate. At least 33% are able to achieve at least partial independence.2

Some adults with autism need a lot of assistance, especially those with low intelligence who are unable to speak. Part- or full-time supervision can be provided by residential treatment programs. At the other end of the spectrum, adults with high-functioning autism are often successful in their professions and able to live independently, although they typically continue to have some difficulties relating to other people. These individuals usually have average to above-average intelligence.

Other symptoms:
Many people with autism have symptoms similar to attention deficit hyperactivity disorder (ADHD). But these symptoms, especially problems with social relationships, are more severe for people with autism. For more information, see the topic Attention Deficit Hyperactivity Disorder.

About 10% of people with autism have some form of savant skills-special limited gifts such as memorizing lists, calculating calendar dates, drawing, or musical ability.1

Many people with autism have unusual sensory perceptions. For example, they may describe a light touch as painful and deep pressure as providing a calming feeling. Others may not feel pain at all. Some people with autism have strong food likes and dislikes and unusual preoccupations.

Sleep problems occur in about 40% to 70% of people with autism.

Other conditions:
Autism is one of several types of pervasive developmental disorders (PDDs), also called autism spectrum disorders (ASD). It is not unusual for autism to be confused with other PDDs, such as Asperger’s disorder or syndrome, or to have overlapping symptoms. A similar condition is called pervasive developmental disorder-NOS (not otherwise specified). PDD-NOS occurs when children display similar behaviors but do not meet the criteria for autism. It is commonly called just PDD. In addition, other conditions with similar symptoms may also have similarities to or occur with autism.

Diagnosis:
Diagnosis is based on behavior, not cause or mechanism. Autism is defined in the DSM-IV-TR as exhibiting at least six symptoms total, including at least two symptoms of qualitative impairment in social interaction, at least one symptom of qualitative impairment in communication, and at least one symptom of restricted and repetitive behavior. Sample symptoms include lack of social or emotional reciprocity, stereotyped and repetitive use of language or idiosyncratic language, and persistent preoccupation with parts of objects. Onset must be prior to age three years, with delays or abnormal functioning in either social interaction, language as used in social communication, or symbolic or imaginative play. The disturbance must not be better accounted for by Rett syndrome or childhood disintegrative disorder. ICD-10 uses essentially the same definition.

Several diagnostic instruments are available. Two are commonly used in autism research: the Autism Diagnostic Interview-Revised (ADI-R) is a semistructured parent interview, and the Autism Diagnostic Observation Schedule (ADOS) uses observation and interaction with the child. The Childhood Autism Rating Scale (CARS) is used widely in clinical environments to assess severity of autism based on observation of children.

A pediatrician commonly performs a preliminary investigation by taking developmental history and physically examining the child. If warranted, diagnosis and evaluations are conducted with help from ASD specialists, observing and assessing cognitive, communication, family, and other factors using standardized tools, and taking into account any associated medical conditions. A pediatric neuropsychologist is often asked to assess behavior and cognitive skills, both to aid diagnosis and to help recommend educational interventions. A differential diagnosis for ASD at this stage might also consider mental retardation, hearing impairment, and a specific language impairment such as Landau-Kleffner syndrome.

Clinical genetics evaluations are often done once ASD is diagnosed, particularly when other symptoms already suggest a genetic cause. Although genetic technology allows clinical geneticists to link an estimated 40% of cases to genetic causes, consensus guidelines in the U.S. and UK are limited to high-resolution chromosome and fragile X testing. A genotype-first model of diagnosis has been proposed, which would routinely assess the genome’s copy number variations. As new genetic tests are developed several ethical, legal, and social issues will emerge. Commercial availability of tests may precede adequate understanding of how to use test results, given the complexity of autism’s genetics. Metabolic and neuroimaging tests are sometimes helpful, but are not routine.

ASD can sometimes be diagnosed by age 14 months, although diagnosis becomes increasingly stable over the first three years of life: for example, a one-year-old who meets diagnostic criteria for ASD is less likely than a three-year-old to continue to do so a few years later. In the UK the National Autism Plan for Children recommends at most 30 weeks from first concern to completed diagnosis and assessment, though few cases are handled that quickly in practice. A 2006 U.S. study found the average age of first evaluation by a qualified professional was 48 months and of formal ASD diagnosis was 61 months, reflecting an average 13-month delay, all far above recommendations.[102] Although the symptoms of autism and ASD begin early in childhood, they are sometimes missed; adults may seek diagnoses to help them or their friends and family understand themselves, to help their employers make adjustments, or in some locations to claim disability living allowances or other benefits.

Underdiagnosis and overdiagnosis are problems in marginal cases, and much of the recent increase in the number of reported ASD cases is likely due to changes in diagnostic practices. The increasing popularity of drug treatment options and the expansion of benefits has given providers incentives to diagnose ASD, resulting in some overdiagnosis of children with uncertain symptoms. Conversely, the cost of screening and diagnosis and the challenge of obtaining payment can inhibit or delay diagnosis. It is particularly hard to diagnose autism among the visually impaired, partly because some of its diagnostic criteria depend on vision, and partly because autistic symptoms overlap with those of common blindness syndromes.

Treatment:
There is no cure for autism, but doctors, therapists, and special teachers can help people with autism overcome or adjust to many difficulties. The earlier a child starts treatment for autism, the better.

The main goals of treatment are to lessen associated deficits and family distress, and to increase quality of life and functional independence. No single treatment is best and treatment is typically tailored to the child’s needs. Intensive, sustained special education programs and behavior therapy early in life can help children acquire self-care, social, and job skills, and often improve functioning and decrease symptom severity and maladaptive behaviors; claims that intervention by age two to three years is crucial are not substantiated. Available approaches include applied behavior analysis (ABA), developmental models, structured teaching, speech and language therapy, social skills therapy, and occupational therapy.Educational interventions have some effectiveness in children: intensive ABA treatment has demonstrated effectiveness in enhancing global functioning in preschool children and is well-established for improving intellectual performance of young children.[106] Neuropsychological reports are often poorly communicated to educators, resulting in a gap between what a report recommends and what education is provided. The limited research on the effectiveness of adult residential programs shows mixed results.

Many medications are used to treat ASD symptoms that interfere with integrating a child into home or school when behavioral treatment fails. More than half of U.S. children diagnosed with ASD are prescribed psychoactive drugs or anticonvulsants, with the most common drug classes being antidepressants, stimulants, and antipsychotics. Aside from antipsychotics, there is scant reliable research about the effectiveness or safety of drug treatments for adolescents and adults with ASD. A person with ASD may respond atypically to medications, the medications can have adverse effects, and no known medication relieves autism’s core symptoms of social and communication impairments.

Although many alternative therapies and interventions are available, few are supported by scientific studies.Treatment approaches have little empirical support in quality-of-life contexts, and many programs focus on success measures that lack predictive validity and real-world relevance. Scientific evidence appears to matter less to service providers than program marketing, training availability, and parent requests. Though most alternative treatments, such as melatonin, have only mild adverse effects some may place the child at risk. A 2008 study found that compared to their peers, autistic boys have significantly thinner bones if on casein-free diets; in 2005, botched chelation therapy killed a five-year-old child with autism.

Treatment is expensive; indirect costs are more so. A U.S. study estimated an average cost of $3.2 million in 2003 U.S. dollars for someone born in 2000, with about 10% medical care, 30% extra education and other care, and 60% lost economic productivity. Publicly supported programs are often inadequate or inappropriate for a given child, and unreimbursed out-of-pocket medical or therapy expenses are associated with likelihood of family financial problems; one 2008 U.S. study found a 14% average loss of annual income in families of children with ASD, and a related study found that ASD is associated with higher probability that child care problems will greatly affect parental employment. After childhood, key treatment issues include residential care, job training and placement, sexuality, social skills, and estate planning.

Different children need different kinds of help, but learning how to communicate is always an important first step. Spoken language can be hard for kids with autism to learn. Most understand words better by seeing them, so therapists teach them how to communicate by pointing or using pictures or sign language. That makes learning other things easier, and eventually, many children with autism learn to talk fluently.

Therapists also help children learn social skills, such as how to greet people, wait for a turn, and follow directions. Some children need special help with living skills (like brushing teeth or making a bed). Others have trouble sitting still or controlling their tempers and need therapy to help them control their behavior. Some children take medications to help their moods and behaviour, but there’s no medicine for autism.

Students with mild autism sometimes can go to mainstream school. But many children with autism need calmer, more orderly surroundings. They also need teachers trained to understand the problems they have with communicating and learning. They may learn at home or in classes at special or private schools.

Click to see:->
Gut and Psychology Syndrome: Natural Treatment for Autism
Natural Treatment for Autism with Enzymes

Autism – Natural Remedies formulated by a Clinical Psychologist

Natural & Herbal Remedies for Autism

Chelation of Mercury for the Treatment of Autism

Native Remedies of Autism

Natural Therapy of Autism

Other conditions
Autism is one of several types of pervasive developmental disorders (PDDs), also called autism spectrum disorders (ASD). It is not unusual for autism to be confused with other PDDs, such as Asperger’s disorder or syndrome, or to have overlapping symptoms. A similar condition is called pervasive developmental disorder-NOS (not otherwise specified). PDD-NOS occurs when children display similar behaviors but do not meet the criteria for autism. It is commonly called just PDD. In addition, other conditions with similar symptoms may also have similarities to or occur with autism.

Prognosis:
There is no known cure. Children recover occasionally, sometimes after intensive treatment and sometimes not; it is not known how often this happens. Most children with autism lack social support, meaningful relationships, future employment opportunities or self-determination. Although core difficulties remain, symptoms often become less severe in later childhood. Few high-quality studies address long-term prognosis. Some adults show modest improvement in communication skills, but a few decline; no study has focused on autism after midlife. Acquiring language before age six, having an IQ above 50, and having a marketable skill all predict better outcomes; independent living is unlikely with severe autism. A 2004 British study of 68 adults who were diagnosed before 1980 as autistic children with IQ above 50 found that 12% achieved a high level of independence as adults, 10% had some friends and were generally in work but required some support, 19% had some independence but were generally living at home and needed considerable support and supervision in daily living, 46% needed specialist residential provision from facilities specializing in ASD with a high level of support and very limited autonomy, and 12% needed high-level hospital care. A 2005 Swedish study of 78 adults that did not exclude low IQ found worse prognosis; for example, only 4% achieved independence. A 2008 Canadian study of 48 young adults diagnosed with ASD as preschoolers found outcomes ranging through poor (46%), fair (32%), good (17%), and very good (4%); 56% of these young adults had been employed at some point during their lives, mostly in volunteer, sheltered or part time work. Changes in diagnostic practice and increased availability of effective early intervention make it unclear whether these findings can be generalized to recently diagnosed children.

Living With Autism:
Some children with mild autism will grow up and be able to live on their own. Those with more serious problems will always need some kind of help. But all children with autism have brighter futures when they have the support and understanding of doctors, teachers, caregivers, parents, brothers, sisters, and friends.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
http://www.charliebrewersworld.com/page4.htm
http://en.wikipedia.org/wiki/Autism
http://www.webmd.com/brain/autism/autism-symptoms

Reblog this post [with Zemanta]
css.php