Snake Bites

Description:
A snakebite is an injury caused by the bite of a snake, especially a venomous snake. A common symptom of a bite from a venomous snake is the presence of two puncture wounds from the animal’s fangs. Sometimes venom injection from the bite may occur. This may result in redness, swelling, and severe pain at the area, which may take up to an hour to appear. Vomiting, blurred vision, tingling of the limbs, and sweating may result. Most bites are on the hands or arms. Fear following a bite is common with symptoms of a racing heart and feeling faint. The venom may cause bleeding, kidney failure, a severe allergic reaction, tissue death around the bite, or breathing problems. Bites may result in the loss of a limb or other chronic problems. The outcome depends on the type of snake, the area of the body bitten, the amount of venom injected, and the general health of the person bitten. Problems are often more severe in children than adults, due to their smaller size.

The number of venomous snakebites that occur each year may be as high as five million. They result in about 2.5 million poisonings and 20,000 to 125,000 deaths. The frequency and severity of bites vary greatly among different parts of the world. They occur most commonly in Africa, Asia, and Latin America, with rural areas more greatly affected. Deaths are relatively rare in Australia, Europe and North America. For example, in the United States, about seven to eight thousand people per year are bitten by venomous snakes (about one in 40 thousand people) and about five people die (about one death per 65 million people)

Symptoms:
The most common symptom of all snakebites is overwhelming fear, which contributes to other symptoms, including nausea and vomiting, diarrhea, vertigo, fainting, tachycardia, and cold, clammy skin. Television, literature, and folklore are in part responsible for the hype surrounding snakebites, and people may have unwarranted thoughts of imminent death.

Dry snakebites and those inflicted by a non-venomous species can still cause severe injury. There are several reasons for this: a snakebite may become infected, with the snake’s saliva and fangs sometimes harboring pathogenic microbial organisms, including Clostridium tetani. Infection is often reported with viper bites whose fangs are capable of deep puncture wounds. Bites may cause anaphylaxis in certain people.

Most snakebites, whether by a venomous snake or not, will have some type of local effect. There is minor pain and redness in over 90 percent of cases, although this varies depending on the site. Bites by vipers and some cobras may be extremely painful, with the local tissue sometimes becoming tender and severely swollen within five minutes. This area may also bleed and blister and can eventually lead to tissue necrosis. Other common initial symptoms of pit viper and viper bites include lethargy, bleeding, weakness, nausea, and vomiting. Symptoms may become more life-threatening over time, developing into hypotension, tachypnea, severe tachycardia, severe internal bleeding, altered sensorium, kidney failure, and respiratory failure.

Bites caused by some snakes, such as the kraits, coral snake, Mojave rattlesnake, and the speckled rattlesnake, reportedly cause little or no pain despite being serious potentially life-threatening injuries. Those bitten may also describe a “rubbery”, “minty”, or “metallic” taste if bitten by certain species of rattlesnake. Spitting cobras and rinkhalses can spit venom in a person’s eyes. This results in immediate pain, ophthalmoparesis, and sometimes blindness.

Some Australian elapids and most viper envenomations will cause coagulopathy, sometimes so severe that a person may bleed spontaneously from the mouth, nose, and even old, seemingly healed wounds. Internal organs may bleed, including the brain and intestines and will cause ecchymosis (bruising) of the skin.

Venom emitted from elapids, including sea snakes, kraits, cobras, king cobra, mambas, and many Australian species, contain toxins which attack the nervous system, causing neurotoxicity. The person may present with strange disturbances to their vision, including blurriness. Paresthesia throughout the body, as well as difficulty in speaking and breathing, may be reported. Nervous system problems will cause a huge array of symptoms, and those provided here are not exhaustive. If not treated immediately they may die from respiratory failure.

Venom emitted from some types of cobras, almost all vipers and some sea snakes causes necrosis of muscle tissue. Muscle tissue will begin to die throughout the body, a condition known as rhabdomyolysis. Rhabdomyolysis can result in damage to the kidneys as a result of myoglobin accumulation in the renal tubules. This, coupled with hypotension, can lead to acute renal failure, and, if left untreated, eventually death.

Causes:
In the developing world most snakebites occur in those who work outside such as farmers, hunters, and fishermen. They often happen when a person steps on the snake or approaches it too closely. In the United States and Europe snakebites most commonly occur in those who keep them as pets.

The type of snake that most often delivers serious bites depends on the region of the world. In Africa, it is mambas, Egyptian cobras, puff adders, and carpet vipers. In the Middle East, it is carpet vipers and elapids. In Central and South America, it is snakes of the Bothrops and Crotalus types, the latter including rattlesnakes. In North America, rattlesnakes are the primary concern, and up to 95% of all snakebite-related deaths in the United States are attributed to the western and eastern diamondback rattlesnakes. In South Asia, it was previously believed that Indian cobras, common kraits, Russell’s viper, and carpet vipers were the most dangerous; other snakes, however, may also cause significant problems in this area of the world.

Risk Factors:
Snakes bite both as a method of hunting and as a means of protection. Risk factors for bites include working outside with one’s hands such as in farming, forestry, and construction. Snakes commonly involved in poisonings include elapids (such as kraits, cobras and mambas), vipers, and sea snakes. The majority of snake species do not have venom and kill their prey by squeezing them. Venomous snakes can be found on every continent except Antarctica.Determining the type of snake that caused a bite is often not possible. The World Health Organization says snakebites are a “neglected public health issue in many tropical and subtropical countries”.

Treatment:
The most important thing to do for a snake bite is to get emergency medical help as soon as possible. A doctor will evaluate the victim to decide on a specific course of treatment. In some cases, a bite from a venomous snake is not life-threatening. The severity depends on the location of the bite and the age and health of the victim. If the bite is not serious, the doctor may simply clean the wound and give the victim a tetanus vaccine.

If the situation is life threatening, the doctor may administer antivenom. This is a substance created with snake venom to counter the snake bite symptoms. It’s injected into the victim. The sooner the antivenom is used, the more effective it will be.

It is not an easy task determining whether or not a bite by any species of snake is life-threatening. A bite by a North American copperhead on the ankle is usually a moderate injury to a healthy adult, but a bite to a child’s abdomen or face by the same snake may be fatal. The outcome of all snakebites depends on a multitude of factors: the size, physical condition, and temperature of the snake, the age and physical condition of the person, the area and tissue bitten (e.g., foot, torso, vein or muscle), the amount of venom injected, the time it takes for the person to find treatment, and finally the quality of that treatment.

Snake identification:
Identification of the snake is important in planning treatment in certain areas of the world, but is not always possible. Ideally the dead snake would be brought in with the person, but in areas where snake bite is more common, local knowledge may be sufficient to recognize the snake. However, in regions where polyvalent antivenoms are available, such as North America, identification of snake is not a high priority item. Attempting to catch or kill the offending snake also puts one at risk for re-envenomation or creating a second person bitten, and generally is not recommended.

The three types of venomous snakes that cause the majority of major clinical problems are vipers, kraits, and cobras. Knowledge of what species are present locally can be crucial, as is knowledge of typical signs and symptoms of envenomation by each type of snake. A scoring system can be used to try to determine the biting snake based on clinical features, but these scoring systems are extremely specific to particular geographical areas.

First aid:
Snakebite first aid recommendations vary, in part because different snakes have different types of venom. Some have little local effect, but life-threatening systemic effects, in which case containing the venom in the region of the bite by pressure immobilization is desirable. Other venoms instigate localized tissue damage around the bitten area, and immobilization may increase the severity of the damage in this area, but also reduce the total area affected; whether this trade-off is desirable remains a point of controversy. Because snakes vary from one country to another, first aid methods also vary.

Many organizations, including the American Medical Association and American Red Cross, recommend washing the bite with soap and water. Australian recommendations for snake bite treatment recommend against cleaning the wound. Traces of venom left on the skin/bandages from the strike can be used in combination with a snake bite identification kit to identify the species of snake. This speeds determination of which antivenom to administer in the emergency room.

Pressure immobilization technique:
As of 2008, clinical evidence for pressure immobilization via the use of an elastic bandage is limited. It is recommended for snakebites that have occurred in Australia (due to elapids which are neurotoxic). It is not recommended for bites from non-neurotoxic snakes such as those found in North America and other regions of the world. The British military recommends pressure immobilization in all cases where the type of snake is unknown.[37]

The object of pressure immobilization is to contain venom within a bitten limb and prevent it from moving through the lymphatic system to the vital organs. This therapy has two components: pressure to prevent lymphatic drainage, and immobilization of the bitten limb to prevent the pumping action of the skeletal muscles.

Antivenom:
Until the advent of antivenom, bites from some species of snake were almost universally fatal. Despite huge advances in emergency therapy, antivenom is often still the only effective treatment for envenomation. The first antivenom was developed in 1895 by French physician Albert Calmette for the treatment of Indian cobra bites. Antivenom is made by injecting a small amount of venom into an animal (usually a horse or sheep) to initiate an immune system response. The resulting antibodies are then harvested from the animal’s blood.

Antivenom is injected into the person intravenously, and works by binding to and neutralizing venom enzymes. It cannot undo damage already caused by venom, so antivenom treatment should be sought as soon as possible. Modern antivenoms are usually polyvalent, making them effective against the venom of numerous snake species. Pharmaceutical companies which produce antivenom target their products against the species native to a particular area. Although some people may develop serious adverse reactions to antivenom, such as anaphylaxis, in emergency situations this is usually treatable and hence the benefit outweighs the potential consequences of not using antivenom. Giving adrenaline (epinephrine) to prevent adverse effect to antivenom before they occur might be reasonable where they occur commonly. Antihistamines do not appear to provide any benefit in preventing adverse reactions.

Prevention:
Snake bites can be prevented in many cases. It’s best to refrain from approaching or handling snakes in the wild. Avoid typical places where snakes like to hide, such as patches of tall grass and piled leaves, and rock and woodpiles. If you encounter a snake, give it space to retreat and let it take cover. It’s in the snake’s nature to avoid interaction.

When working outside where snakes may be present, wear tall boots, long pants, and leather gloves. Avoid working outside during the night and in warmer weather, which is when snakes are most active.

Treatment partly depends on the type of snake. Washing the wound with soap and water and holding the limb still is recommended. Trying to suck out the venom, cutting the wound with a knife, or using a tourniquet is not recommended. Antivenom is effective at preventing death from bites; however, antivenoms frequently have side effects. The type of antivenom needed depends on the type of snake involved. When the type of snake is unknown, antivenom is often given based on the types known to be in the area. In some areas of the world getting the right type of antivenom is difficult and this partly contributes to why they sometimes do not work. An additional issue is the cost of these medications. Antivenom has little effect on the area around the bite itself. Supporting the person’s breathing is sometimes also required.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
https://en.wikipedia.org/wiki/Snakebite
https://www.healthline.com/health/snake-bites

Advertisements

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.