Category Archives: Pediatric

Tantrum

Other Names: Temper tantrum and Hissy fit

Definition:
A tantrum is an emotional outburst, usually associated with those in emotional distress, that is typically characterized by stubbornness, crying, screaming, violence, defiance, angry ranting, a resistance to attempts at pacification, and, in some cases, hitting, and other physically violent behavior. Physical control may be lost; the person may be unable to remain still; and even if the “goal” of the person is met, he or she may not be calmed. A tantrum may be expressed in a tirade: a protracted, angry speech.

In tantrum children throw, shout, scream, roll on the ground, kick and beat — when their demands, often unreasonable, are not met. Most of these outbursts occur between the ages of one and three years. Thereafter, they slowly subside in normal children.

Tantrums are usually signs of frustration. They can occur when the child is hungry, in pain, sleepy or denied something. Children who are mentally challenged or have autism are more likely to throw tantrums. They are unable to articulate their problem. Taking care of the immediate need or distracting the child usually works.

Problems arise when others interfere. The child very soon figures out that by screaming and rolling on the floor they can get their way.

Children grow out of tantrums when they go to school. If a child continues this behaviour of biting, kicking or throwing things in school, in front of strangers and in public, it is no longer normal. If it continues into middle school, medical evaluation is required. It may be due to unrecognised ADHD, anxiety or depression.

CLICK & SEE THE PICTURES

Causes:
Tantrums are one of the most common forms of problematic behavior in young children, but tend to decrease in frequency and intensity as the child grows older. For the toddler, tantrums can be considered as normal, even as gauges of a developing strength of character.

While tantrums are sometimes seen as a predictor of future anti-social behaviour, in another sense they are simply an age-appropriate sign of excessive frustration, and will diminish over time given a calm and consistent handling. Parental containment where a child cannot contain itself—rather than what the child is ostensibly demanding—may be what is really required.

Selma Fraiberg warned against “too much pressure or forceful methods of control from the outside” in child-rearing: “if we turn every instance of pants changing, treasure hunting, napping, puddle wading and garbage distribution into a governmental crisis we can easily bring on fierce defiance, tantrums, and all the fireworks of revolt in the nursery”.

Intellectual disabilites:
Some people who have psychiatric disorders such as autism, ADHD, and intellectual disability could be more vulnerable to tantrums than others, although anyone experiencing brain damage (temporary or permanent) can suffer from tantrums. Anyone may be prone to tantrums once in a while, regardless of gender or age. However, a meltdown due to sensory overload (which even neurotypical children can experience) is not the same as a temper tantrum.

Aberrations:
Freud considered that the Wolf Man’s development of temper tantrums was connected with his seduction by his sister: he became “discontented, irritable and violent, took offence on every possible occasion, and then flew into a rage and screamed like a savage”. Freud linked the tantrums to an unconscious need for punishment driven by feelings of guilt—something which he thought could be generalised to many other cases of childhood tantrums.

Heinz Kohut contended that tantrums were narcissistic rages, caused by the thwarting of the infant’s grandiose-exhibitionist core. The blow to the inflated self-image, when a child’s wishes are (however justifiably) refused, creates fury because it strikes at the feeling of omnipotence.

Jealousy over the birth of a sibling, and resulting aggression, may also provoke negativistic tantrums, as the effort at controlling the feelings overloads the child’s system of self-regulation.

Solutions:
If there is no medical reason for the tantrum, and it is not due to an epileptic seizure, these personality traits need to be tackled. Beating the child or shouting is not an answer. A “time out” with the premise that the problems will be tackled later on works with older children. With younger ones, discipline needs to be enforced. A firm “no” should remain just that — a “no”. Once it is changed to a “yes”, the child gets confused and soon figures out that there is a higher court of appeal. Structured sports activities and training in martial arts give a child mental discipline, emotional control, physical endurance and channels aggression.

As children grow, they realise the difference between appropriate and inappropriate anger. Parents have a great deal to do with this, showing the child the limits enforced by society. Physically abusive or alcoholic fathers tend to raise similar children.

Anger is not always bad, it can also be good. It activates the body’s natural defences to a dangerous situation, releasing chemicals that raise the heart rate and blood pressure. The muscles become tense and sweating may occur.

Some adults have not matured enough to realise that anger is a negative emotion. They are chronically angry. It may eventually result in “intermittent explosive disorder” when the reaction is out of proportion to the precipitating event. These episodes of increased energy, racing thoughts and palpitations result in tirades and heated arguments. Society does not accept such behaviour. It may result in the loss of a job and a breakdown in personal relationships. It may lead to alcohol or drug abuse and self-harm. Chronic anger over a long time can result in depression.

To manage anger, lead a disciplined life with regular physical activity, yoga and meditation. If these do not work, professional help may be required. Medication like antidepressants may also help.

We need to rule our mind and control it. This has to be learnt from a young age. Otherwise, we are at the mercy of the caprices of our emotions.

Help to prevent tantrum in children:

Try to prevent tantrums from happening in the first place, whenever possible. Here are some ideas that may help:

  1. Give plenty of positive attention.: Get in the habit of catching your child being good. Reward your little one with praise and attention for positive behavior.

2.Try to give toddlers some control over little things.: Offer minor choices such as “Do you want orange juice or apple juice?” or “Do you want to brush your teeth before or after taking a bath?” This way, you aren’t asking “Do you want to brush your teeth now?” — which inevitably will be answered “no.”

  1. Keep off-limits objects out of sight and out of reach.: This makes struggles less likely. Obviously, this isn’t always possible, especially outside of the home where the environment can’t be controlled.

4.Distract your child.: Take advantage of your little one’s short attention span by offering something else in place of what they can’t have. Start a new activity to replace the frustrating or forbidden one. Or simply change the environment. Take your toddler outside or inside or move to a different room.

5.Help kids learn new skills and succeed.: Help kids learn to do things. Praise them to help them feel proud of what they can do. Also, start with something simple before moving on to more challenging tasks.

5.Consider the request carefully when your child wants something.: Is it outrageous? Maybe it isn’t. Choose your battles.
Know your child’s limits. If you know your toddler is tired, it’s not the best time to go grocery shopping or try to squeeze in one more errand.

Resources:
https://en.wikipedia.org/wiki/Tantrum
https://kidshealth.org/en/parents/tantrums.html
https://www.telegraphindia.com/health/how-to-manage-temper-tantrums/cid/1689765?ref=health_health-page

Bronchiolitis


Description:
Bronchiolitis mostly affects infants and toddlers age 2 and younger and is caused by swollen airways (bronchioles) that collect with mucus and make it hard to breathe. Bronchitis mostly affects older children and adults. It results in swelling in the upper airway — the trachea and upper bronchial tubes. In addition, bronchiolitis normally goes away in a few weeks, whereas bronchitis can become a long-term (chronic) condition and is often caused by lung irritants, such as cigarette smoke. However, both conditions can be caused by a viral infection Bronchiolitis is almost always caused by a virus. Typically, the peak time for bronchiolitis is during the winter months.

Bronchiolitis starts out with symptoms similar to those of a common cold but then progresses to coughing, wheezing and sometimes difficulty breathing. Symptoms of bronchiolitis can last for several days to weeks, even a month.

Most children get better with care at home. A very small percentage of children require hospitalization.

Bronchiolitis itself is not contagious. However, the viruses that can cause bronchiolitis are contagious. The viruses are very common and spread easily through coughs, sneezing, talking or touching shared objects. RSV has at least two strains and infects nearly every child by the age of 2. Other viruses, such as the flu and the common cold, can also lead to bronchiolitis if they cause the bronchioles to swell and fill with mucus.

CLICK & SEE THE PICTURES

Symptoms:
Bronchiolitis symptoms in infants may be difficult to identify. Symptoms include:

*Stuffy or runny nose
*Cough
*Fussiness
*Trouble feeding
*Low-grade fever (often < 101.5 degrees F)
*Irritability

In some cases, these are the only symptoms a child may have of bronchiolitis. In other cases, symptoms get worse.

After this, there may be a week or more of difficulty breathing or a whistling noise when the child breathes out (wheezing).

Many infants will also have an ear infection (otitis media).

When to call a Doctor:
*Sluggishness or extreme inactivity
*Refusing to eat or drink
*Dehydration (not enough wet diapers, or having dark urine)
*Trouble breathing:
*Wheezing
*Nostril flaring
*Whistling noises on the exhale
*Seeing the ribcage go in when the baby breathes in
*Breathing very fast or shallow
*Working very hard to breathe
*Pauses in breathing
*Blue or purple lips or fingertips
*Hypothermia (a temperature that is lower than the normal 98 degrees F)

Bronchiolitis in toddlers and bronchiolitis in adults may cause many of the same symptoms, although sunken ribs during breathing and nasal flaring are most likely to occur only in the very young.

Causes:
Bronchiolitis occurs when a virus infects the bronchioles, which are the smallest airways in your lungs. The infection makes the bronchioles swell and become inflamed. Mucus collects in these airways, which makes it difficult for air to flow freely in and out of the lungs.

Most cases of bronchiolitis are caused by the respiratory syncytial virus (RSV). RSV is a common virus that infects just about every child by the age of 2. Outbreaks of the RSV infection occur every winter. Bronchiolitis can also be caused by other viruses, including those that cause the flu or the common cold. Infants can be reinfected with RSV because at least two strains exist.

The viruses that cause bronchiolitis are easily spread. You can contract them through droplets in the air when someone who is sick coughs, sneezes or talks. You can also get them by touching shared objects — such as utensils, towels or toys — and then touching your eyes, nose or mouth.

Risk Factors:
*Age younger than 2 years (and younger than 3 months in particular)
*Preterm birth
*Another heart or lung problem
*A weak immune system
*Exposure to cigarette smoke
*Exposure to lots of other kids or people (in a daycare or crowded home)
*Having older siblings who attend school or daycare

Diagnosis:
Tests and X-rays are not usually needed to diagnose bronchiolitis. The doctor can usually identify the problem by observing your child and listening to his or her lungs with a stethoscope. However, it may take more than one or two visits to distinguish the condition from a cold or the flu.

If your child is at risk of severe bronchiolitis, if symptoms are worsening or if another problem is suspected, your doctor may order tests, including:

*Chest X-ray. Your doctor may request a chest X-ray to look for signs of pneumonia.

*Viral testing. Your doctor may collect a sample of mucus from your child to test for the virus causing bronchiolitis. This is done using a swab that’s gently inserted into the nose.

*Blood tests. Occasionally, blood tests might be used to check your child’s white blood cell count. An increase in white blood cells is usually a sign that the body is fighting an infection. A blood test can also determine whether the level of oxygen has decreased in your child’s bloodstream.

Your doctor may also ask you about signs of dehydration, especially if your child has been refusing to drink or eat or has been vomiting. Signs of dehydration include sunken eyes, dry mouth and skin, sluggishness, and little or no urination.

Treatment:
Bronchiolitis typically lasts for two to three weeks. The majority of children with bronchiolitis can be cared for at home with supportive care. It’s important to be alert for changes in breathing difficulty, such as struggling for each breath, being unable to speak or cry because of difficulty breathing, or making grunting noises with each breath.

When bronchiolitis becomes severe, conventional treatment may involve:

*Hospitalization
*Oxygen via a mask or machine
*A nebulizer, to deliver inhaled drugs that open up and reduce inflammation in the tiny airways of the lungs
*Intravenous (IV) fluids to help hydrate
*Suctioning mucus from the mouth or nose
*Monitoring breathing and heart rate with a machine
*Making sure your child’s temperature stays in a healthy range

Oxygen is considered the most effective treatment in young children. Because most bronchiolitis is the result of a virus, antibiotics are not usually prescribed. In some cases, certain drugs may be recommended by health care providers for treatment, including:

*Drugs to treat RSV infection, such as ribavirin or palivizumab
*Antibiotics (if the infection was indeed bacterial or if there is also an ear infection)
*Decongestant sprays
*Corticosteroids, such as prednisone
*Alpha or beta agonists to help relax and open the airways, such as albuterol or racemic epinephrine
*Fever reducers, such as acetaminophen or ibuprofen, depending on the child’s age. (If you are considering using medication to reduce your child’s fever at home, talk to a healthcare professional due to serious safety concerns.)

Ayurvedic treatment:
According to Ayurveda aggravated Vata (air) blocks the Kapha (water) in the respiratory channels, the movement of the air gets interrupted, and phlegm accumulates in the lung tissue. In order to expel this phlegm, there is a natural reaction of coughing, which results in Bronchitis. This can be attributed to many reasons like inhalation of smoke and dust, physical exertion, intake of foods and drinks that have a drying effect on the body, and the obstruction of the trachea by food particles. Another cause is suppressing the natural urges of the body, such as passing stool and urine, hunger, thirst, sleep, sneezing, breathing, yawning, tears, coughing, etc. All of these causes are investigated before beginning a personalized Bronchitis treatment regimen at Jiva.

Ayurveda calls this disease Kasroga and considers it to be caused by poor digestion. Poor diet, poor digestion and incomplete elimination of wastes lead to formation of ama (mucus) in the lungs. This creates a favorable ground for growth of infecting organisms in the bronchial area. Stress, poor lifestyle, bad circulation, and lack of rejuvenative measures can deteriorate the body’s immune response to invading organisms in the bronchial area.

The Ayurvedic treatment of Bronchitis is aimed at simultaneously correcting lung and stomach functions. Herbs are given to ease troubled breathing and expel phlegm. At the same time, Ayurvedic digestive formulas are prescribed to enhance the digestive fire in order to kill pathogens.

Prevention:
Because the viruses that cause bronchiolitis spread from person to person, one of the best ways to prevent it is to wash your hands frequently — especially before touching your baby when you have a cold or other respiratory illness. Wearing a face mask at this time is appropriate.

If your child has bronchiolitis, keep him or her at home until the illness is past to avoid spreading it to others.

Other commonsense ways to help curb infection include:

*Limit contact with people who have a fever or cold. If your child is a newborn, especially a premature newborn, avoid exposure to people with colds in the first two months of life.

*Clean and disinfect surfaces. Clean and disinfect surfaces and objects that people frequently touch, such as toys and doorknobs. This is especially important if a family member is sick.

*Cover coughs and sneezes. Cover your mouth and nose with a tissue. Then throw away the tissue and wash your hands or use alcohol hand sanitizer.

*Use your own drinking glass. Don’t share glasses with others, especially if someone in your family is ill.

*Wash hands often. Frequently wash your own hands and those of your child. Keep an alcohol-based hand sanitizer handy for yourself and your child when you’re away from home.

*Breast-feed. Respiratory infections are significantly less common in breast-fed babies.
Vaccines and medications

There are no vaccines for the most common causes of bronchiolitis (RSV and rhinovirus). However, an annual flu shot is recommended for everyone older than 6 months.

Infants at high risk of the RSV infection, such as those born very prematurely or with a heart-lung condition or a depressed immune system, may be given the medication palivizumab (Synagis) to decrease the likelihood of RSV infections.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
https://draxe.com/bronchiolitis/
https://www.mayoclinic.org/diseases-conditions/bronchiolitis/symptoms-causes/syc-20351565
https://www.jiva.com/diseases/bronchitis/

Child’s Brain Development

Be it reciting a jingle heard on the television, running after everything that catches their fancy or bewildering adults with their endless questions, toddlers give us a glimpse of their infectious energy every day. Their energy and curiosity often leave parents astounded. This fascination about the world around them stems from the fact that the brains of young children are more active than adult brains.
Knowing more about brain development can help us make sense of their behavior and provide the best conditions for their growth. Up to 6 years of age, the brain is constantly learning, developing and forming memories. In fact, the brain develops up to 90% of its capacity by age 6¹. With the number of active brain connections, a toddler processes more information than an adult brain.
Brain development in young children:
Overall, a toddler’s brain grows up to 25% of an adult brain size by age 3. We know that different areas of the brain serve different functions. Essential brain functions are active right from birth. After birth, sensory functions such as sight and smell are the first to develop followed by higher cognitive functions such as problem-solving. Language development occurs between the ages of two and four.

CLICK @ SEE THE PICTURES

There are several parts of the brain that see phenomenal growth during the first few years of life. Synapses are connections between two different nerve cells in the brain. The development of synapses is the fastest among young children. This allows them to learn more than adults in the same amount of time.
The visual cortex, located at the hind side of the brain, aids in visual perception and the growth of this part improves the brain capacity to sense depth and color. The growth of the cerebellum is linked to motor skills that allow a child to crawl and later start walking.
There are quite a few factors that create ideal conditions for brain development. Mentally stimulating activities help exercise the developing brain while adequate nutrition provides the nutrients for its development.

Resources: The Telegraph, Kolkata(India)

Complications In Pregnancy

 

Pre-eclampsia, eclampsia or toxemia of pregnancy
Definition:
Pre-eclampsia or preeclampsia (PE) is a disorder of pregnancy characterized by high blood pressure and a large amount of protein in the urine. The disorder usually occurs in the third trimester of pregnancy and gets worse over time. In severe disease there may be red blood cell breakdown, a low blood platelet count, impaired liver function, kidney dysfunction, swelling, shortness of breath due to fluid in the lungs, or visual disturbances. PE increases the risk of poor outcomes for both the mother and the baby. If left untreated, it may result in seizures at which point it is known as eclampsia.

CLICK & SEE

Toxemia of pregnancy is a severe condition that sometimes occurs in the latter weeks of pregnancy. It is characterized by high blood pressure; swelling of the hands, feet, and face; and an excessive amount of protein in the urine. If the condition is allowed to worsen, the mother may experience convulsions and coma, and the baby may be stillborn.
The term toxemia is actually a misnomer from the days when it was thought that the condition was caused by toxic (poisonous) substances in the blood. The illness is more accurately called preeclampsia before the convulsive stage and eclampsia afterward.

Preeclampsia affects between 2–8% of pregnancies worldwide. Hypertensive disorders of pregnancy are one of the most common causes of death due to pregnancy. They resulted in 29,000 deaths in 2013 – down from 37,000 deaths in 1990. Preeclampsia usually occurs after 32 weeks; however, if it occurs earlier it is associated with worse outcomes. Women who have had PE are at increased risk of heart disease later in life. The word eclampsia is from the Greek term for lightning. The first known description of the condition was by Hippocrates in the 5th century BCE

Symptoms:
Swelling (especially in the hands and face) was originally considered an important sign for a diagnosis of preeclampsia. However, because swelling is a common occurrence in pregnancy, its utility as a distinguishing factor in preeclampsia is not great. Pitting edema (unusual swelling, particularly of the hands, feet, or face, notable by leaving an indentation when pressed on) can be significant, and should be reported to a health care provider.

In general, none of the signs of preeclampsia are specific, and even convulsions in pregnancy are more likely to have causes other than eclampsia in modern practice. Further, a symptom such as epigastric pain may be misinterpreted as heartburn. Diagnosis, therefore, depends on finding a coincidence of several preeclamptic features, the final proof being their regression after delivery.

The symptoms of toxemia of pregnancy (which may lead to death if not treated) are divided into three stages, each progressively more serious:
Mild preeclampsia symptoms include edema (puffiness under the skin due to fluid accumulation in the body tissues, often noted around the ankles), mild elevation of blood pressure, and the presence of small amounts of protein in the urine.

Severe preeclampsia symptoms include extreme edema, extreme elevation of blood pressure, the presence of large amounts of protein in the urine, headache, dizziness, double vision, nausea, vomiting, and severe pain in the right upper portion of the abdomen.
Eclampsia symptoms include convulsions and coma.

Risk Factors:
Known risk factors for preeclampsia include:

*Nulliparity (never given birth)
*Older age, and diabetes mellitus
*Kidney disease
*Chronic hypertension
*Prior history of preeclampsia
*Family history of preeclampsia
*Advanced maternal age (>35 years)
*Obesity
*Antiphospholipid antibody syndrome
*Multiple gestation
*Having donated a kidney.
*Having sub-clinical hypothyroidism or thyroid antibodies

It is also more frequent in a women’s first pregnancy and if she is carrying twins. The underlying mechanism involves abnormal formation of blood vessels in the placenta amongst other factors. Most cases are diagnosed before delivery. Rarely, preeclampsia may begin in the period after delivery. While historically both high blood pressure and protein in the urine were required to make the diagnosis, some definitions also include those with hypertension and any associated organ dysfunction. Blood pressure is defined as high when it is greater than 140 mmHg systolic or 90 mmHg diastolic at two separate times, more than four hours apart in a women after twenty weeks of pregnancy. PE is routinely screened for during prenatal care.
Causes:
There is no definitive known cause of preeclampsia, though it is likely related to a number of factors. Some of these factors include:

*Abnormal placentation (formation and development of the placenta)
*Immunologic factors
*Prior or existing maternal pathology – preeclampsia is seen more at a higher incidence in individuals with preexisting hypertension, obesity, antiphospholipid antibody syndrome, and those with history of preeclampsia
*Dietary factors, e.g. calcium supplementation in areas where dietary calcium intake is low has been shown to reduce the risk of preeclampsia.
*Environmental factors, e.g. air pollution
*Those with long term high blood pressure have a risk 7 to 8 times higher than those without.

Physiologically, research has linked preeclampsia to the following physiologic changes: alterations in the interaction between the maternal immune response and the placenta, placental injury, endothelial cell injury, altered vascular reactivity, oxidative stress, imbalance among vasoactive substances, decreased intravascular volume, and disseminated intravascular coagulation.

While the exact cause of preeclampsia remains unclear, there is strong evidence that a major cause predisposing a susceptible woman to preeclampsia is an abnormally implanted placenta. This abnormally implanted placenta is thought to result in poor uterine and placental perfusion, yielding a state of hypoxia and increased oxidative stress and the release of anti-angiogenic proteins into the maternal plasma along with inflammatory mediators. A major consequence of this sequence of events is generalized endothelial dysfunction. The abnormal implantation is thought to stem from the maternal immune system’s response to the placenta and refers to evidence suggesting a lack of established immunological tolerance in pregnancy. Endothelial dysfunction results in hypertension and many of the other symptoms and complications associated with preclampsia.

One theory proposes that certain dietary deficiencies may be the cause of some cases. Also, there is the possibility that some forms of preeclampsia and eclampsia are the result of deficiency of blood flow in the uterus.

Diagnosis:
Pre-eclampsia is diagnosed when a pregnant woman develops:

*Blood pressure >_ 140 mm Hg systolic or  >_  90 mm Hg diastolic on two separate readings taken at least four to six hours apart after 20 weeks gestation in an individual with previously normal blood pressure.
*In a woman with essential hypertension beginning before 20 weeks gestational age, the diagnostic criteria are: an increase in systolic blood pressure (SBP) of   >_ 30mmHg or an increase in diastolic blood pressure (DBP) of   >_15mmHg.
*Proteinuria  >_ 0.3 grams (300 mg) or more of protein in a 24-hour urine sample or a SPOT urinary protein to creatinine ratio  >_ 0.3 or a urine dipstick reading of 1+ or greater (dipstick reading should only be used if other quantitative methods are not available)

Suspicion for preeclampsia should be maintained in any pregnancy complicated by elevated blood pressure, even in the absence of proteinuria. Ten percent of individuals with other signs and symptoms of preeclampsia and 20% of individuals diagnosed with eclampsia show no evidence of proteinuria. In the absence of proteinuria, the presence of new-onset hypertension (elevated blood pressure) and the new onset of one or more of the following is suggestive of the diagnosis of preeclampsia:

*Evidence of kidney dysfunction (oliguria, elevated creatinine levels)
*Impaired liver function (impaired liver function tests)
*Thrombocytopenia (platelet count <100,000/microliter)
*Pulmonary edema
*Ankle edema pitting type
*Cerebral or visual disturbances
*Preeclampsia is a progressive disorder and these signs of organ dysfunction are indicative of severe preeclampsia. A systolic blood pressure ?160 or diastolic blood pressure ?110 and/or proteinuria >5g in a 24-hour period is also indicative of severe preeclampsia. Clinically, individuals with severe preeclampsia may also present epigastric/right upper quadrant abdominal pain, headaches, and vomiting. Severe preeclampsia is a significant risk factor for intrauterine fetal death.

Of note, a rise in baseline blood pressure (BP) of 30 mmHg systolic or 15 mmHg diastolic, while not meeting the absolute criteria of 140/90, is still considered important to note, but is not considered diagnostic.

Predictive tests:
There have been many assessments of tests aimed at predicting preeclampsia, though no single biomarker is likely to be sufficiently predictive of the disorder. Predictive tests that have been assessed include those related to placental perfusion, vascular resistance, kidney dysfunction, endothelial dysfunction, and oxidative stress. Examples of notable tests include:

*Doppler ultrasonography of the uterine arteries to investigate for signs of inadequate placental perfusion. This test has a high negative predictive value among those individuals with a history of prior preeclampsia.
*Elevations in serum uric acid (hyperuricemia) is used by some to “define” preeclampsia,[14] though it has been found to be a poor predictor of the disorder. Elevated levels in the blood (hyperuricemia) are likely due to reduced uric acid clearance secondary to impaired kidney function.
*Angiogenic proteins such as vascular endothelial growth factor (VEGF) and placental growth factor (PIGF) and anti-angiogenic proteins such as soluble fms-like tyrosine kinase-1 (sFlt-1) have shown promise for potential clinical use in diagnosing preeclampsia, though evidence is sufficient to recommend a clinical use for these markers.
*Recent studies have shown that looking for podocytes, specialized cells of the kidney, in the urine has the potential to aid in the prediction of preeclampsia. Studies have demonstrated that finding podocytes in the urine may serve as an early marker of and diagnostic test for preeclampsia. Research is ongoing.

Differential diagnosis:
Pre-eclampsia can mimic and be confused with many other diseases, including chronic hypertension, chronic renal disease, primary seizure disorders, gallbladder and pancreatic disease, immune or thrombotic thrombocytopenic purpura, antiphospholipid syndrome and hemolytic-uremic syndrome. It must be considered a possibility in any pregnant woman beyond 20 weeks of gestation. It is particularly difficult to diagnose when preexisting disease such as hypertension is present. Women with acute fatty liver of pregnancy may also present with elevated blood pressure and protein in the urine, but differs by the extent of liver damage. Other disorders that can cause high blood pressure include thyrotoxicosis, pheochromocytoma, and drug misuse
Treatment:
Preeclampsia and eclampsia cannot be completely cured until the pregnancy is over. Until that time, treatment includes the control of high blood pressure and the intravenous administration of drugs to prevent convulsions. Drugs may also be given to stimulate the production of urine. In some severe cases, early delivery of the baby is needed to ensure the survival of the mother.

Prevention:
Recommendations for prevention include: aspirin in those at high risk, calcium supplementation in areas with low intake, and treatment of prior hypertension with medications. In those with PE delivery of the fetus and placenta is an effective treatment. When delivery becomes recommended depends on how severe the PE and how far along in pregnancy a person is. Blood pressure medication, such as labetalol and methyldopa, may be used to improve the mother’s condition before delivery. Magnesium sulfate may be used to prevent eclampsia in those with severe disease. Bedrest and salt intake have not been found to be useful for either treatment or prevention.

Diet:
Protein or calorie supplementation have no effect on preeclampsia rates, and dietary protein restriction does not appear to increase preeclampsia rates. Further, there is no evidence that changing salt intake has an effect.

Supplementation with antioxidants such as vitamin C and E has no effect on preeclampsia incidence, nor does supplementation with vitamin D. Therefore, supplementation with vitamins C, E, and D is not recommended for reducing the risk of pre-eclampsia.

Calcium supplementation of at least 1 gram per day is recommended during pregnancy as it prevents preeclampsia where dietary calcium intake is low, especially for those at high risk. Low selenium status is associated with higher incidence of preeclampsia.

Aspirin:
Taking aspirin is associated with a 1% to 5% reduction in preeclampsia and a 1% to 5% reduction in premature births in women at high risk. The WHO recommends low-dose aspirin for the prevention of preeclampsia in women at high risk and recommend it be started before 20 weeks of pregnancy. The United States Preventive Services Task Force recommends a low-dose regimen for women at high risk beginning in the 12th week.

Physical activity:
There is insufficient evidence to recommend either exercise or strict bedrest as preventative measures of pre-eclampsia.

Smoking cessation:
In low-risk pregnancies the association between cigarette smoking and a reduced risk of preeclampsia has been consistent and reproducible across epidemiologic studies. High-risk pregnancies (those with pregestational diabetes, chronic hypertension, history of preeclampsia in a previous pregnancy, or multifetal gestation) showed no significant protective effect. The reason for this discrepancy is not definitively known; research supports speculation that the underlying pathology increases the risk of preeclampsia to such a degree that any measurable reduction of risk due to smoking is masked. However, the damaging effects of smoking on overall health and pregnancy outcomes outweighs the benefits in decreasing the incidence of preeclampsia. It is recommended that smoking be stopped prior to, during and after pregnancy

Restriction of salt in the diet may help reduce swelling, it does not prevent the onset of high blood pressure or the appearance of protein in the urine. During prenatal visits, the doctor routinely checks the woman’s weight, blood pressure, and urine. If toxemia is detected early, complications may be reduced.

Resources:
http://health.howstuffworks.com/pregnancy-and-parenting/pregnancy/complications/a-guide-to-pregnancy-complications-ga13.htm
http://en.wikipedia.org/wiki/Pre-eclampsia

Spina bifida

Definition:
Spina bifida is a type of birth defect called a neural tube defect. It occurs when the bones of the spine (vertebrae) don’t form properly around part of the baby’s spinal cord. Spina bifida can be mild or severe….CLICK & SEE

Spina bifida malformations fall into three categories: spina bifida occulta, spina bifida cystica with meningocele, and spina bifida cystica with myelomeningocele. The most common location of the malformations is the lumbar and sacral areas. Myelomeningocele is the most significant and common form, and this leads to disability in most affected individuals. The terms spina bifida and myelomeningocele are usually used interchangeably.

Spina bifida meningocele and myelomeningocele are among the most common birth defects, with a worldwide incidence of about 1 in every 1000 births. The occulta form is much more common, but only rarely causes neurological symptoms.

Clasification:....CLICK & SEE
Spina bifida occulta:
Occulta is Latin for “hidden”. This is the mildest form of spina bifida. In occulta, the outer part of some of the vertebrae is not completely closed. The splits in the vertebrae are so small that the spinal cord does not protrude. The skin at the site of the lesion may be normal, or it may have some hair growing from it; there may be a dimple in the skin, or a birthmark.

Many people with this type of spina bifida do not even know they have it, as the condition is asymptomatic in most cases. The incidence of spina bifida occulta is approximately 10-20% of the population, and most people are diagnosed incidentally from spinal X-rays. A systematic review of radiographic research studies found no relationship between spina bifida occulta and back pain. More recent studies not included in the review support the negative findings.

However, other studies suggest spina bifida occulta is not always harmless. One study found that among patients with back pain, severity is worse if spina bifida occulta is present.

Incomplete posterior fusion is not a true spina bifida, and is very rarely of neurological significance.

Meningocele:
A posterior meningocele  or meningeal cyst  is the least common form of spina bifida. In this form, the vertebrae develop normally, but the meninges are forced into the gaps between the vertebrae. As the nervous system remains undamaged, individuals with meningocele are unlikely to suffer long-term health problems, although cases of tethered cord have been reported. Causes of meningocele include teratoma and other tumors of the sacrococcyx and of the presacral space, and Currarino syndrome.

A meningocele may also form through dehiscences in the base of the skull. These may be classified by their localisation to occipital, frontoethmoidal, or nasal. Endonasal meningoceles lie at the roof of the nasal cavity and may be mistaken for a nasal polyp. They are treated surgically. Encephalomeningoceles are classified in the same way and also contain brain tissue.

Myelomeningocele:
This type of spina bifida often results in the most severe complications. In individuals with myelomeningocele, the unfused portion of the spinal column allows the spinal cord to protrude through an opening. The meningeal membranes that cover the spinal cord form a sac enclosing the spinal elements. The term Meningomyelocele is also used interchangeably.

Myeloschisis:
Spina bifida with myeloschisis is the most severe form of myelomeningocele. In this type, the involved area is represented by a flattened, plate-like mass of nervous tissue with no overlying membrane. The exposure of these nerves and tissues make the baby more prone to life-threatening infections such as meningitis.

The protruding portion of the spinal cord and the nerves that originate at that level of the cord are damaged or not properly developed. As a result, there is usually some degree of paralysis and loss of sensation below the level of the spinal cord defect. Thus, the more cranial the level of the defect, the more severe the associated nerve dysfunction and resultant paralysis may be. People may have ambulatory problems, loss of sensation, deformities of the hips, knees or feet, and loss of muscle tone.

Signs and symptoms:
Physical complications:

*Leg weakness and paralysis
*Orthopedic abnormalities (i.e., club foot, hip dislocation, scoliosis)
*Bladder and bowel control problems, including incontinence, urinary tract infections, and poor renal function
*Pressure sores and skin irritations
*Abnormal eye movement

68% of children with spina bifida have an allergy to latex, ranging from mild to life-threatening. The common use of latex in medical facilities makes this a particularly serious concern. The most common approach to avoid developing an allergy is to avoid contact with latex-containing products such as examination gloves and condoms and catheters that do not specify they are latex free, and many other products, such as some commonly used by dentists.

The spinal cord lesion or the scarring due to surgery may result in a tethered spinal cord. In some individuals, this causes significant traction and stress on the spinal cord and can lead to a worsening of associated paralysis, scoliosis, back pain, and worsening bowel and/or bladder function

Neurological complications:
Many individuals with spina bifida have an associated abnormality of the cerebellum, called the Arnold Chiari II malformation. In affected individuals, the back portion of the brain is displaced from the back of the skull down into the upper neck. In about 90% of the people with myelomeningocele, hydrocephalus also occurs because the displaced cerebellum interferes with the normal flow of cerebrospinal fluid, causing an excess of the fluid to accumulate.  In fact, the cerebellum also tends to be smaller in individuals with spina bifida, especially for those with higher lesion levels.

The corpus callosum is abnormally developed in 70-90% of individuals with spina bifida myelomeningocele; this impacts the communication processes between the left and right brain hemispheres. Further, white matter tracts connecting posterior brain regions with anterior regions appear less organized. White matter tracts between frontal regions have also been found to be impaired.

Cortex abnormalities may also be present. For example, frontal regions of the brain tend to be thicker than expected, while posterior and parietal regions are thinner. Thinner sections of the brain are also associated with increased cortical folding. Neurons within the cortex may also be displaced.

Executive function:
Several studies have demonstrated difficulties with executive functions in youth with spina bifida, with greater deficits observed in youth with shunted hydrocephalus. Unlike typically developing children, youths with spina bifida do not tend to improve in their executive functioning as they grow older. Specific areas of difficulty in some individuals include planning, organizing, initiating, and working memory. Problem-solving, abstraction, and visual planning may also be impaired.  Further, children with spina bifida may have poor cognitive flexibility. Although executive functions are often attributed to the frontal lobes of the brain, individuals with spina bifida have intact frontal lobes; therefore, other areas of the brain may be implicated.

Individuals with spina bifida, especially those with shunted hydrocephalus, often have attention problems. Children with spina bifida and shunted hydrocephalus have higher rates of ADHD than typically developing children (31% vs. 17%). Deficits have been observed for selective attention and focused attention, although poor motor speed may contribute to poor scores on tests of attention.  Attention deficits may be evident at a very early age, as infants with spina bifida lag behind their peers in orienting to faces.

Academic skills:
Individuals with spina bifida may struggle academically, especially in the subjects of mathematics and reading. In one study, 60% of children with spina bifida were diagnosed with a learning disability.  In addition to brain abnormalities directly related to various academic skills, achievement is likely affected by impaired attentional control and executive functioning. Children with spina bifida may perform well in elementary school, but begin to struggle as academic demands increase.

Children with spina bifida are more likely than their typically developing peers to have dyscalculia. Individuals with spina bifida have demonstrated stable difficulties with arithmetic accuracy and speed, mathematical problem-solving, and general use and understanding of numbers in everyday life. Mathematics difficulties may be directly related to the thinning of the parietal lobes (regions implicated in mathematical functioning) and indirectly associated with deformities of the cerebellum and midbrain that affect other functions involved in mathematical skills. Further, higher numbers of shunt revisions are associated with poorer mathematics abilities. Working memory and inhibitory control deficiencies have been implicated for math difficulties, although visual-spatial difficulties are not likely involved. Early intervention to address mathematics difficulties and associated executive functions is crucial.

Individuals with spina bifida tend to have better reading skills than mathematics skills. Children and adults with spina bifida have stronger abilities in reading accuracy than in reading comprehension. Comprehension may be especially impaired for text that requires an abstract synthesis of information rather than a more literal understanding. Individuals with spina bifida may have difficulty with writing due to deficits in fine motor control and working memory.

Causes:
The exact cause of this birth defect isn’t known. Experts think that genes and the environment are part of the cause. For example, women who have had one child with spina bifida are more likely to have another child with the disease. Women who are obese or who have diabetes are also more likely to have a child with spina bifida.

Spina bifida is sometimes caused by the failure of the neural tube to close during the first month of embryonic development (often before the mother knows she is pregnant). Some forms are known to occur with primary conditions that cause raised central nervous system pressure, which raises the possibility of a dual pathogenesis.

In normal circumstances, the closure of the neural tube occurs around the 23rd (rostral closure) and 27th (caudal closure) day after fertilization. However, if something interferes and the tube fails to close properly, a neural tube defect will occur. Medications such as some anticonvulsants, diabetes, having a relative with spina bifida, obesity, and an increased body temperature from fever or external sources such as hot tubs and electric blankets may increase the chances of delivery of a baby with a spina bifida.

Extensive evidence from mouse strains with spina bifida indicates that there is sometimes a genetic basis for the condition. Human spina bifida, like other human diseases, such as cancer, hypertension and atherosclerosis (coronary artery disease), likely results from the interaction of multiple genes and environmental factors.

Research has shown the lack of folic acid (folate) is a contributing factor in the pathogenesis of neural tube defects, including spina bifida. Supplementation of the mother’s diet with folate can reduce the incidence of neural tube defects by about 70%, and can also decrease the severity of these defects when they occur. It is unknown how or why folic acid has this effect.

Spina bifida does not follow direct patterns of heredity like muscular dystrophy or haemophilia. Studies show a woman having had one child with a neural tube defect such as spina bifida has about a 3% risk of having another affected child. This risk can be reduced with folic acid supplementation before pregnancy. For the general population, low-dose folic acid supplements are advised (0.4 mg/day)

Treatment:
There is no known cure for nerve damage caused by spina bifida. To prevent further damage of the nervous tissue and to prevent infection, pediatric neurosurgeons operate to close the opening on the back. The spinal cord and its nerve roots are put back inside the spine and covered with meninges. In addition, a shunt may be surgically installed to provide a continuous drain for the excess cerebrospinal fluid produced in the brain, as happens with hydrocephalus. Shunts most commonly drain into the abdomen or chest wall. However, if spina bifida is detected during pregnancy, then open or minimally-invasive fetal surgery can be performed.

In childhood:
Most individuals with myelomeningocele will need periodic evaluations by a variety of specialists:

*Physiatrists coordinate the rehabilitation efforts of different therapists and prescribe specific therapies, adaptive equipment, or medications to encourage as high of a functional performance within the community as possible.

*Orthopedists monitor growth and development of bones, muscles, and joints.

*Neurosurgeons perform surgeries at birth and manage complications associated with tethered cord and hydrocephalus.

*Neurologists treat and evaluate nervous system issues, such as seizure disorders.

*Urologists to address kidney, bladder, and bowel dysfunction – many will need to manage their urinary systems with a program of catheterization. Bowel management programs aimed at improving elimination are also designed.

*Ophthalmologists evaluate and treat complications of the eyes.

*Orthotists design and customize various types of assistive technology, including braces, crutches, walkers, and wheelchairs to aid in mobility. As a general rule, the higher the level of the spina bifida defect, the more severe the paralysis, but paralysis does not always occur. Thus, those with low levels may need only short leg braces, whereas those with higher levels do best with a wheelchair, and some may be able to walk unaided.

*Physical therapists, occupational therapists, psychologists, and speech/language pathologists aid in rehabilitative therapies and increase independent living skills.

Transition to adulthood:
Although many children’s hospitals feature integrated multidisciplinary teams to coordinate healthcare of youth with spina bifida, the transition to adult healthcare can be difficult because the above healthcare professionals operate independently of each other, requiring separate appointments and communicate among each other much less frequently. Healthcare professionals working with adults may also be less knowledgeable about spina bifida because it is considered a childhood chronic health condition.  Due to the potential difficulties of the transition, adolescents with spina bifida and their families are encouraged to begin to prepare for the transition around ages 14–16, although this may vary depending on the adolescent’s cognitive and physical abilities and available family support. The transition itself should be gradual and flexible. The adolescent’s multidisciplinary treatment team may aid in the process by preparing comprehensive, up-to-date documents detailing the adolescent’s medical care, including information about medications, surgery, therapies, and recommendations. A transition plan and aid in identifying adult healthcare professionals are also helpful to include in the transition process.

Further complicating the transition process is the tendency for youths with spina bifida to be delayed in the development of autonomy, with boys particularly at risk for slower development of independence. An increased dependence on others (in particular family members) may interfere with the adolescent’s self-management of health-related tasks, such as catheterization, bowel management, and taking medications.  As part of the transition process, it is beneficial to begin discussions at an early age about educational and vocational goals, independent living, and community involvement.

Prevention:
There is neither a single cause of spina bifida nor any known way to prevent it entirely. However, dietary supplementation with folic acid has been shown to be helpful in reducing the incidence of spina bifida. Sources of folic acid include whole grains, fortified breakfast cereals, dried beans, leaf vegetables and fruits.

Folate fortification of enriched grain products has been mandatory in the United States since 1998. The U.S. Food and Drug Administration, Public Health Agency of Canada  and UK recommended amount of folic acid for women of childbearing age and women planning to become pregnant is at least 0.4 mg/day of folic acid from at least three months before conception, and continued for the first 12 weeks of pregnancy.  Women who have already had a baby with spina bifida or other type of neural tube defect, or are taking anticonvulsant medication should take a higher dose of 4–5 mg/day.

Certain mutations in the gene VANGL1 are implicated as a risk factor for spina bifida: These mutations have been linked with spina bifida in some families with a history of spina bifida.

Pregnancy screening:
Open spina bifida can usually be detected during pregnancy by fetal ultrasound. Increased levels of maternal serum alpha-fetoprotein (MSAFP) should be followed up by two tests – an ultrasound of the fetal spine and amniocentesis of the mother’s amniotic fluid (to test for alpha-fetoprotein and acetylcholinesterase). AFP tests are now mandated by some state laws (including California). and failure to provide them can have legal ramifications. In one case a man born with spina bifida was awarded a $2 million settlement after court found his mother’s OBGYN negligent for not performing these tests. Spina bifida may be associated with other malformations as in dysmorphic syndromes, often resulting in spontaneous miscarriage. In the majority of cases, though, spina bifida is an isolated malformation.

Genetic counseling and further genetic testing, such as amniocentesis, may be offered during the pregnancy, as some neural tube defects are associated with genetic disorders such as trisomy 18. Ultrasound screening for spina bifida is partly responsible for the decline in new cases, because many pregnancies are terminated out of fear that a newborn might have a poor future quality of life. With modern medical care, the quality of life of patients has greatly improved.

Resources:
http://en.wikipedia.org/wiki/Spina_bifida
http://www.webmd.com/parenting/baby/tc/spina-bifida-topic-overview