Categories
Ailmemts & Remedies Pediatric

Spina bifida

Definition:
Spina bifida is a type of birth defect called a neural tube defect. It occurs when the bones of the spine (vertebrae) don’t form properly around part of the baby’s spinal cord. Spina bifida can be mild or severe….CLICK & SEE

Spina bifida malformations fall into three categories: spina bifida occulta, spina bifida cystica with meningocele, and spina bifida cystica with myelomeningocele. The most common location of the malformations is the lumbar and sacral areas. Myelomeningocele is the most significant and common form, and this leads to disability in most affected individuals. The terms spina bifida and myelomeningocele are usually used interchangeably.

Spina bifida meningocele and myelomeningocele are among the most common birth defects, with a worldwide incidence of about 1 in every 1000 births. The occulta form is much more common, but only rarely causes neurological symptoms.

Clasification:....CLICK & SEE
Spina bifida occulta:
Occulta is Latin for “hidden”. This is the mildest form of spina bifida. In occulta, the outer part of some of the vertebrae is not completely closed. The splits in the vertebrae are so small that the spinal cord does not protrude. The skin at the site of the lesion may be normal, or it may have some hair growing from it; there may be a dimple in the skin, or a birthmark.

Many people with this type of spina bifida do not even know they have it, as the condition is asymptomatic in most cases. The incidence of spina bifida occulta is approximately 10-20% of the population, and most people are diagnosed incidentally from spinal X-rays. A systematic review of radiographic research studies found no relationship between spina bifida occulta and back pain. More recent studies not included in the review support the negative findings.

However, other studies suggest spina bifida occulta is not always harmless. One study found that among patients with back pain, severity is worse if spina bifida occulta is present.

Incomplete posterior fusion is not a true spina bifida, and is very rarely of neurological significance.

Meningocele:
A posterior meningocele  or meningeal cyst  is the least common form of spina bifida. In this form, the vertebrae develop normally, but the meninges are forced into the gaps between the vertebrae. As the nervous system remains undamaged, individuals with meningocele are unlikely to suffer long-term health problems, although cases of tethered cord have been reported. Causes of meningocele include teratoma and other tumors of the sacrococcyx and of the presacral space, and Currarino syndrome.

A meningocele may also form through dehiscences in the base of the skull. These may be classified by their localisation to occipital, frontoethmoidal, or nasal. Endonasal meningoceles lie at the roof of the nasal cavity and may be mistaken for a nasal polyp. They are treated surgically. Encephalomeningoceles are classified in the same way and also contain brain tissue.

Myelomeningocele:
This type of spina bifida often results in the most severe complications. In individuals with myelomeningocele, the unfused portion of the spinal column allows the spinal cord to protrude through an opening. The meningeal membranes that cover the spinal cord form a sac enclosing the spinal elements. The term Meningomyelocele is also used interchangeably.

Myeloschisis:
Spina bifida with myeloschisis is the most severe form of myelomeningocele. In this type, the involved area is represented by a flattened, plate-like mass of nervous tissue with no overlying membrane. The exposure of these nerves and tissues make the baby more prone to life-threatening infections such as meningitis.

The protruding portion of the spinal cord and the nerves that originate at that level of the cord are damaged or not properly developed. As a result, there is usually some degree of paralysis and loss of sensation below the level of the spinal cord defect. Thus, the more cranial the level of the defect, the more severe the associated nerve dysfunction and resultant paralysis may be. People may have ambulatory problems, loss of sensation, deformities of the hips, knees or feet, and loss of muscle tone.

Signs and symptoms:
Physical complications:

*Leg weakness and paralysis
*Orthopedic abnormalities (i.e., club foot, hip dislocation, scoliosis)
*Bladder and bowel control problems, including incontinence, urinary tract infections, and poor renal function
*Pressure sores and skin irritations
*Abnormal eye movement

68% of children with spina bifida have an allergy to latex, ranging from mild to life-threatening. The common use of latex in medical facilities makes this a particularly serious concern. The most common approach to avoid developing an allergy is to avoid contact with latex-containing products such as examination gloves and condoms and catheters that do not specify they are latex free, and many other products, such as some commonly used by dentists.

The spinal cord lesion or the scarring due to surgery may result in a tethered spinal cord. In some individuals, this causes significant traction and stress on the spinal cord and can lead to a worsening of associated paralysis, scoliosis, back pain, and worsening bowel and/or bladder function

Neurological complications:
Many individuals with spina bifida have an associated abnormality of the cerebellum, called the Arnold Chiari II malformation. In affected individuals, the back portion of the brain is displaced from the back of the skull down into the upper neck. In about 90% of the people with myelomeningocele, hydrocephalus also occurs because the displaced cerebellum interferes with the normal flow of cerebrospinal fluid, causing an excess of the fluid to accumulate.  In fact, the cerebellum also tends to be smaller in individuals with spina bifida, especially for those with higher lesion levels.

The corpus callosum is abnormally developed in 70-90% of individuals with spina bifida myelomeningocele; this impacts the communication processes between the left and right brain hemispheres. Further, white matter tracts connecting posterior brain regions with anterior regions appear less organized. White matter tracts between frontal regions have also been found to be impaired.

Cortex abnormalities may also be present. For example, frontal regions of the brain tend to be thicker than expected, while posterior and parietal regions are thinner. Thinner sections of the brain are also associated with increased cortical folding. Neurons within the cortex may also be displaced.

Executive function:
Several studies have demonstrated difficulties with executive functions in youth with spina bifida, with greater deficits observed in youth with shunted hydrocephalus. Unlike typically developing children, youths with spina bifida do not tend to improve in their executive functioning as they grow older. Specific areas of difficulty in some individuals include planning, organizing, initiating, and working memory. Problem-solving, abstraction, and visual planning may also be impaired.  Further, children with spina bifida may have poor cognitive flexibility. Although executive functions are often attributed to the frontal lobes of the brain, individuals with spina bifida have intact frontal lobes; therefore, other areas of the brain may be implicated.

Individuals with spina bifida, especially those with shunted hydrocephalus, often have attention problems. Children with spina bifida and shunted hydrocephalus have higher rates of ADHD than typically developing children (31% vs. 17%). Deficits have been observed for selective attention and focused attention, although poor motor speed may contribute to poor scores on tests of attention.  Attention deficits may be evident at a very early age, as infants with spina bifida lag behind their peers in orienting to faces.

Academic skills:
Individuals with spina bifida may struggle academically, especially in the subjects of mathematics and reading. In one study, 60% of children with spina bifida were diagnosed with a learning disability.  In addition to brain abnormalities directly related to various academic skills, achievement is likely affected by impaired attentional control and executive functioning. Children with spina bifida may perform well in elementary school, but begin to struggle as academic demands increase.

Children with spina bifida are more likely than their typically developing peers to have dyscalculia. Individuals with spina bifida have demonstrated stable difficulties with arithmetic accuracy and speed, mathematical problem-solving, and general use and understanding of numbers in everyday life. Mathematics difficulties may be directly related to the thinning of the parietal lobes (regions implicated in mathematical functioning) and indirectly associated with deformities of the cerebellum and midbrain that affect other functions involved in mathematical skills. Further, higher numbers of shunt revisions are associated with poorer mathematics abilities. Working memory and inhibitory control deficiencies have been implicated for math difficulties, although visual-spatial difficulties are not likely involved. Early intervention to address mathematics difficulties and associated executive functions is crucial.

Individuals with spina bifida tend to have better reading skills than mathematics skills. Children and adults with spina bifida have stronger abilities in reading accuracy than in reading comprehension. Comprehension may be especially impaired for text that requires an abstract synthesis of information rather than a more literal understanding. Individuals with spina bifida may have difficulty with writing due to deficits in fine motor control and working memory.

Causes:
The exact cause of this birth defect isn’t known. Experts think that genes and the environment are part of the cause. For example, women who have had one child with spina bifida are more likely to have another child with the disease. Women who are obese or who have diabetes are also more likely to have a child with spina bifida.

Spina bifida is sometimes caused by the failure of the neural tube to close during the first month of embryonic development (often before the mother knows she is pregnant). Some forms are known to occur with primary conditions that cause raised central nervous system pressure, which raises the possibility of a dual pathogenesis.

In normal circumstances, the closure of the neural tube occurs around the 23rd (rostral closure) and 27th (caudal closure) day after fertilization. However, if something interferes and the tube fails to close properly, a neural tube defect will occur. Medications such as some anticonvulsants, diabetes, having a relative with spina bifida, obesity, and an increased body temperature from fever or external sources such as hot tubs and electric blankets may increase the chances of delivery of a baby with a spina bifida.

Extensive evidence from mouse strains with spina bifida indicates that there is sometimes a genetic basis for the condition. Human spina bifida, like other human diseases, such as cancer, hypertension and atherosclerosis (coronary artery disease), likely results from the interaction of multiple genes and environmental factors.

Research has shown the lack of folic acid (folate) is a contributing factor in the pathogenesis of neural tube defects, including spina bifida. Supplementation of the mother’s diet with folate can reduce the incidence of neural tube defects by about 70%, and can also decrease the severity of these defects when they occur. It is unknown how or why folic acid has this effect.

Spina bifida does not follow direct patterns of heredity like muscular dystrophy or haemophilia. Studies show a woman having had one child with a neural tube defect such as spina bifida has about a 3% risk of having another affected child. This risk can be reduced with folic acid supplementation before pregnancy. For the general population, low-dose folic acid supplements are advised (0.4 mg/day)

Treatment:
There is no known cure for nerve damage caused by spina bifida. To prevent further damage of the nervous tissue and to prevent infection, pediatric neurosurgeons operate to close the opening on the back. The spinal cord and its nerve roots are put back inside the spine and covered with meninges. In addition, a shunt may be surgically installed to provide a continuous drain for the excess cerebrospinal fluid produced in the brain, as happens with hydrocephalus. Shunts most commonly drain into the abdomen or chest wall. However, if spina bifida is detected during pregnancy, then open or minimally-invasive fetal surgery can be performed.

In childhood:
Most individuals with myelomeningocele will need periodic evaluations by a variety of specialists:

*Physiatrists coordinate the rehabilitation efforts of different therapists and prescribe specific therapies, adaptive equipment, or medications to encourage as high of a functional performance within the community as possible.

*Orthopedists monitor growth and development of bones, muscles, and joints.

*Neurosurgeons perform surgeries at birth and manage complications associated with tethered cord and hydrocephalus.

*Neurologists treat and evaluate nervous system issues, such as seizure disorders.

*Urologists to address kidney, bladder, and bowel dysfunction – many will need to manage their urinary systems with a program of catheterization. Bowel management programs aimed at improving elimination are also designed.

*Ophthalmologists evaluate and treat complications of the eyes.

*Orthotists design and customize various types of assistive technology, including braces, crutches, walkers, and wheelchairs to aid in mobility. As a general rule, the higher the level of the spina bifida defect, the more severe the paralysis, but paralysis does not always occur. Thus, those with low levels may need only short leg braces, whereas those with higher levels do best with a wheelchair, and some may be able to walk unaided.

*Physical therapists, occupational therapists, psychologists, and speech/language pathologists aid in rehabilitative therapies and increase independent living skills.

Transition to adulthood:
Although many children’s hospitals feature integrated multidisciplinary teams to coordinate healthcare of youth with spina bifida, the transition to adult healthcare can be difficult because the above healthcare professionals operate independently of each other, requiring separate appointments and communicate among each other much less frequently. Healthcare professionals working with adults may also be less knowledgeable about spina bifida because it is considered a childhood chronic health condition.  Due to the potential difficulties of the transition, adolescents with spina bifida and their families are encouraged to begin to prepare for the transition around ages 14–16, although this may vary depending on the adolescent’s cognitive and physical abilities and available family support. The transition itself should be gradual and flexible. The adolescent’s multidisciplinary treatment team may aid in the process by preparing comprehensive, up-to-date documents detailing the adolescent’s medical care, including information about medications, surgery, therapies, and recommendations. A transition plan and aid in identifying adult healthcare professionals are also helpful to include in the transition process.

Further complicating the transition process is the tendency for youths with spina bifida to be delayed in the development of autonomy, with boys particularly at risk for slower development of independence. An increased dependence on others (in particular family members) may interfere with the adolescent’s self-management of health-related tasks, such as catheterization, bowel management, and taking medications.  As part of the transition process, it is beneficial to begin discussions at an early age about educational and vocational goals, independent living, and community involvement.

Prevention:
There is neither a single cause of spina bifida nor any known way to prevent it entirely. However, dietary supplementation with folic acid has been shown to be helpful in reducing the incidence of spina bifida. Sources of folic acid include whole grains, fortified breakfast cereals, dried beans, leaf vegetables and fruits.

Folate fortification of enriched grain products has been mandatory in the United States since 1998. The U.S. Food and Drug Administration, Public Health Agency of Canada  and UK recommended amount of folic acid for women of childbearing age and women planning to become pregnant is at least 0.4 mg/day of folic acid from at least three months before conception, and continued for the first 12 weeks of pregnancy.  Women who have already had a baby with spina bifida or other type of neural tube defect, or are taking anticonvulsant medication should take a higher dose of 4–5 mg/day.

Certain mutations in the gene VANGL1 are implicated as a risk factor for spina bifida: These mutations have been linked with spina bifida in some families with a history of spina bifida.

Pregnancy screening:
Open spina bifida can usually be detected during pregnancy by fetal ultrasound. Increased levels of maternal serum alpha-fetoprotein (MSAFP) should be followed up by two tests – an ultrasound of the fetal spine and amniocentesis of the mother’s amniotic fluid (to test for alpha-fetoprotein and acetylcholinesterase). AFP tests are now mandated by some state laws (including California). and failure to provide them can have legal ramifications. In one case a man born with spina bifida was awarded a $2 million settlement after court found his mother’s OBGYN negligent for not performing these tests. Spina bifida may be associated with other malformations as in dysmorphic syndromes, often resulting in spontaneous miscarriage. In the majority of cases, though, spina bifida is an isolated malformation.

Genetic counseling and further genetic testing, such as amniocentesis, may be offered during the pregnancy, as some neural tube defects are associated with genetic disorders such as trisomy 18. Ultrasound screening for spina bifida is partly responsible for the decline in new cases, because many pregnancies are terminated out of fear that a newborn might have a poor future quality of life. With modern medical care, the quality of life of patients has greatly improved.

Resources:
http://en.wikipedia.org/wiki/Spina_bifida
http://www.webmd.com/parenting/baby/tc/spina-bifida-topic-overview

Categories
Ailmemts & Remedies Pediatric

Roseola

Alternative Names: Exanthem subitum; Sixth disease

Definition:
Roseola is a generally mild infection that usually affects children by age 2. It occasionally affects adults. Roseola is extremely common — so common that most children have been infected with roseola by the time they enter kindergarten.
CLICK & SEE THE PICTURES

Two common strains of herpes viruses cause roseola. The condition typically causes several days of fever, followed by a rash.

Some children develop only a very mild case of roseola and never show any clear indication of illness, while others experience the full range of symptoms.

Roseola typically isn’t serious. Rarely, complications from a very high fever can result. Treatment of roseola includes bed rest, fluids and medications to reduce fever.

It is frequently called roseola, although this term could be applied to any rose-colored rash.

Symptoms:
The child may have a runny nose, sore throat, and eye redness.

A fever usually occurs before the rash appears. It lasts for 3 (sometimes up to 7) days. The fever may be as high as 105° Fahrenheit, and it generally responds well to acetaminophen (Tylenol).

Between the second and fourth day of the illness, the fever drops and a rash appears (often as the fever falls).

•The rash starts on the trunk and spreads to the limbs, neck, and face. The rash is pink or rose-colored, and has fairly small sores that are slightly raised.
•The rash lasts from a few hours to 2 – 3 days. It usually does not itch.
Other symptoms include:
CLICK & SEE

•Irritability
•High fever that comes on quickly

Causes:
Until recently, its origin was unknown, but it is now known to be caused by two human herpesviruses, HHV-6 (Human herpesvirus 6) and HHV-7, which are sometimes referred to collectively as Roseolovirus. There are two variants of HHV-6 and studies in the US, Europe and Japan have shown that exanthema subitum is caused by HHV-6B which infects over 90% of infants by age 2. Current research indicates that babies congenitally infected with the HHV-6A virus can have inherited the virus on a chromosome

The virus is spread through the faecal-oral route (poor hygiene after using the toilet) or by airborne droplets. Careful handwashing can help prevent its spread.

Occasionally other viruses cause an illness very similar to roseola.

Like other viral illnesses, such as a common cold, roseola spreads from person to person through contact with an infected person’s respiratory secretions or saliva. For example, a healthy child who shares a cup with a child who has roseola could contract the virus.
CLICK & SEE

Roseola is contagious even if no rash is present. That means the condition can spread while an infected child has only a fever, even before it’s clear that the child has roseola. Watch for signs of roseola if your child has interacted with another child who has the illness.

Unlike chickenpox and other childhood viral illnesses that spread rapidly, roseola rarely results in a communitywide outbreak. The infection can occur at any time of the year.
Roseola occurs throughout the year. The time between becoming infected and the beginning of symptoms (incubation period) is 5 to 15 days.

Risk Factors:
Older infants are at greatest risk of acquiring roseola because they haven’t had time yet to develop their own antibodies against many viruses. While in the uterus, babies receive antibodies from their mothers that protect them as newborns from contracting infections, such as roseola. But this immunity fades with time. The most common age for a child to contract roseola is between 6 and 15 months.

Complications:
Seizures in children
Occasionally a child with roseola experiences a seizure brought on by a rapid rise in body temperature. If this happens, your child might briefly lose consciousness and jerk his or her arms, legs or head for several seconds to minutes. He or she may also lose bladder or bowel control temporarily.

If your child has a seizure, seek emergency care. Although frightening, fever-related seizures in otherwise healthy young children are generally short-lived and are rarely harmful.

Complications from roseola are rare. The vast majority of otherwise healthy children and adults with roseola recover quickly and completely.

Concerns for people with weak immune systems
Roseola is of greater concern in people whose immune system is compromised, such as those who have recently received a bone marrow or organ transplant. They may contract a new case of roseola — or a previous infection may come back while their immune system is weakened. Because they have less resistance to viruses in general, immune-compromised people tend to develop more severe cases of infection and have a harder time fighting off illness.

People with weak immune systems who contract roseola may experience potentially serious complications from the infection, such as pneumonia or encephalitis — a potentially life-threatening inflammation of the brain.

Diagnosis:
Roseola is usually diagnosed from the history and symptoms, especially if the infection has recently been reported in the community.
•Physical exam of rash
•Swollen lymph nodes on the neck (cervical nodes) or back of the scalp (occipital nodes)

Clinical features:
Typically the disease affects a child between six months and two years of age, and begins with a sudden high fever (39–40 °C; 102.2-104 °F). This can cause, in rare cases, febrile convulsions (also known as febrile seizures or “fever fits”) due to the sudden rise in body temperature, but in many cases the child appears normal. After a few days the fever subsides, and just as the child appears to be recovering, a red rash appears. This usually begins on the trunk, spreading to the legs and neck. The rash is not itchy and may last 1 to 2 days.  In contrast, a child suffering from measles would usually appear more infirm, with symptoms of conjunctivitis and a cough, and their rash would affect the face and last for several days. Liver dysfunction can occur in rare cases.

The rare adult reactivates with HHV-6 and can show signs of mononucleosis.

Treatment:
The disease usually gets better without complications.
Most children recover fully from roseola within a week of the onset of the fever. With your doctor’s advice, you can give your child over-the-counter medications to reduce fever, such as acetaminophen (Tylenol, others) or ibuprofen (Advil, Motrin, others). However, don’t give aspirin to a child who has a viral illness because aspirin has been associated with the development of Reye’s syndrome, which can be serious.

There’s no specific treatment for roseola, although some doctors may prescribe the antiviral medication ganciclovir (Cytovene) to treat the infection in people with weakened immunity. Antibiotics aren’t effective in treating viral illnesses, such as roseola.

Like most viruses, roseola just needs to run its course. Once the fever subsides, your child should feel better soon. However, a fever can make your child uncomfortable. To treat your child’s fever at home, your doctor may recommend:

*Plenty of rest. Let your child rest in bed until the fever disappears.

*Plenty of fluids. Encourage your child to drink clear fluids, such as water, ginger ale, lemon-lime soda, clear broth or an electrolyte solution (such as Pedialyte) or sports drinks (such as Gatorade and Powerade) to prevent dehydration. Remove the gas bubbles from carbonated fluids. You can do this by letting the carbonated beverage stand or by shaking, pouring or stirring the beverage. Removing the carbonation will mean having your child avoid the added discomfort of excess burping or intestinal gas that carbonated beverages may cause.

*Sponge baths. A lukewarm sponge bath or a cool washcloth applied to your child’s head can soothe the discomfort of a fever. However, avoid using ice, cold water, fans or cold baths. These may give the child unwanted chills.There’s no specific treatment for the rash of roseola, which fades on its own in a short time

Prevention:
Because there’s no vaccine to prevent roseola, the best you can do to prevent the spread of roseola is to avoid exposing your child to an infected child. If your child is sick with roseola, keep him or her home and away from other children until the fever has broken. Once the rash appears, the virus is much less contagious.

Most people have antibodies to roseola by the time they’re of school age, making them immune to a second infection. Even so, if one household member contracts the virus, make sure that all family members wash their hands frequently to prevent spread of the virus to anyone who isn’t immune.

Adults who never contracted roseola as children can become infected later in life, though the disease tends to be mild in healthy adults. The main concern is that infected adults can pass the virus on to children.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
http://www.mayoclinic.com/health/roseola/DS00452
http://www.nlm.nih.gov/medlineplus/ency/article/000968.htm
http://en.wikipedia.org/wiki/Exanthema_subitum
http://www.bbc.co.uk/health/physical_health/conditions/roseola2.shtml

Categories
Ailmemts & Remedies Pediatric

Pyloric stenosis

Alternative Name : Infantile hypertrophic pyloric stenosis

Definition:
Pyloric stenosis is a condition that causes severe vomiting in the first few months of life. There is narrowing (stenosis) of the opening from the stomach to the intestines, due to enlargement (hypertrophy) of the muscle surrounding this opening (the pylorus, meaning “gate”), which spasms when the stomach empties. It is uncertain whether there is a real congenital narrowing or whether there is a functional hypertrophy of the muscle which develops in the first few weeks of life. Babies with this condition may seem to always be hungry
click to see the pictures……..(01)...…(1)..….…(2).……..(3)....……
Pyloric stenosis also occurs in adults where the cause is usually a narrowed pylorus due to scarring from chronic peptic ulceration. This is a different condition from the infantile form.

Prompt treatment of pyloric stenosis is important for preventing complications. Pyloric stenosis can be corrected with surgery.

Males are more commonly affected than females, with firstborn males affected about four times as often, and there is a genetic predisposition for the disease. It is commonly associated with people of Jewish ancestry, and has multifactorial inheritance patterns. Pyloric stenosis is more common in Caucasians than Hispanics, Blacks, or Asians. The incidence is 2.4 per 1000 live births in Caucasians , 1.8 in Hispanics, 0.7 in Blacks, and 0.6 in Asians. It is also less common amongst children of mixed race parents.  Caucasian babies with blood type B or O are more likely than other types to be affected

Symptoms:
Signs of pyloric stenosis usually appear within three to five weeks after birth. Pyloric stenosis is rare in babies older than age 3 months.

Signs and symptoms are:
*Frequent projectile vomiting. Pyloric stenosis often causes projectile vomiting — the forceful ejection of milk or formula up to several feet away — within 30 minutes after your baby eats. Vomiting may be mild at first and gradually become more severe. The vomit may sometimes contain blood.

*Persistent hunger. Babies who have pyloric stenosis often want to eat soon after vomiting.

*Stomach contractions. You may notice wave-like contractions that move across your baby’s upper abdomen (peristalsis) soon after feeding but before vomiting. This is caused by stomach muscles trying to force food past the outlet of the pylorus.

*Dehydration. Your baby may cry without tears or become lethargic. You may find yourself changing fewer wet diapers or diapers that aren’t as wet as you expect.

*Changes in bowel movements. Since pyloric stenosis prevents food from reaching the intestines, babies with this condition may be constipated.

*Weight problems. Pyloric stenosis can prevent a baby from gaining weight, and can sometimes even cause weight loss.

*Less active or seems unusually irritable

*Urinating much less frequently or is having noticeably fewer bowel movements

Causes:
The cause of the thickening is unknown, although genetic factors may play a role. Children of parents who had pyloric stenosis are more likely to have this problem.

Normally, food passes easily from the stomach into the duodenum (the first part of the small intestine) through a valve called the pylorus. In pyloric stenosis, the muscles of the pylorus are thickened. This thickening prevents the stomach from emptying into the small intestine.

Risk Factors:
Risk factors for pyloric stenosis include:

*Sex. Pyloric stenosis occurs more often in males than in females.

*Birth order. About one-third of babies affected by pyloric stenosis are firstborns.

*Family history. More than 1 in 10 babies with pyloric stenosis has a family member who had the disorder.

*Early antibiotic use. Babies given certain antibiotics, such as erythromycin, in the first weeks of life for whooping cough (pertussis) have an increased risk of pyloric stenosis. In addition, babies born to mothers who were given certain antibiotics in late pregnancy also may have an increased risk of pyloric stenosis.

Complications:
Pyloric stenosis can lead to:

*An electrolyte imbalance. Electrolytes are minerals, such as chloride and potassium, that circulate in the body’s fluids to help regulate many vital functions, such as heartbeat. When a baby vomits every time he or she eats, dehydration and an imbalance of electrolytes eventually occurs

*Stomach irritation. Repeated vomiting can irritate your baby’s stomach. This irritation may even cause mild bleeding.

*Jaundice. Rarely, infants who have pyloric stenosis develop jaundice — a yellowish discoloration of the skin and eyes caused by a buildup of a substance secreted by the liver called bilirubin.

Diagnosis:
Diagnosis is via a careful history and physical examination, often supplemented by radiographic studies. There should be suspicion for pyloric stenosis in any young infant with severe vomiting. On exam, palpation of the abdomen may reveal a mass in the epigastrium. This mass, which consists of the enlarged pylorus, is referred to as the ‘olive,’ and is sometimes evident after the infant is given formula to drink. It is an elusive diagnostic skill requiring much patience and experience. There are often palpable (or even visible) peristaltic waves due to the stomach trying to force its contents past the narrowed pyloric outlet.

At this point, most cases of pyloric stenosis are diagnosed/confirmed with ultrasound, if available, showing the thickened pylorus. Although somewhat less useful, an upper GI series (x-rays taken after the baby drinks a special contrast agent) can be diagnostic by showing the narrowed pyloric outlet filled with a thin stream of contrast material; a “string sign” or the “railroad track sign”. For either type of study, there are specific measurement criteria used to identify the abnormal results. Plain x-rays of the abdomen are not useful, except when needed to rule out other problems.

Blood tests will reveal hypokalemic, hypochloremic metabolic alkalosis due to loss of gastric acid (which contain hydrochloric acid and potassium) via persistent vomiting; these findings can be seen with severe vomiting from any cause. The potassium is decreased further by the body’s release of aldosterone, in an attempt to compensate for the hypovolaemia due to the severe vomiting.

Pathophysiology
The gastric outlet obstruction due to the hypertrophic pylorus impairs emptying of gastric contents into the duodenum. As a consequence, all ingested food and gastric secretions can only exit via vomiting, which can be of a projectile nature. The vomited material does not contain bile because the pyloric obstruction prevents entry of duodenal contents (containing bile) into the stomach.

This results in loss of gastric acid (hydrochloric acid). The chloride loss results in hypochloremia which impairs the kidney’s ability to excrete bicarbonate. This is the significant factor that prevents correction of the alkalosis.

A secondary hyperaldosteronism develops due to the hypovolemia. The high aldosterone levels causes the kidneys to:

*avidly retain Na+ (to correct the intravascular volume depletion)

*excrete increased amounts of K+ into the urine (resulting in hypokalaemia).

The body’s compensatory response to the metabolic alkalosis is hypoventilation resulting in an elevated arterial pCO2.=[pp\][[\=0808i[po9il;

Treatment:
Infantile pyloric stenosis is typically managed with surgery; very few cases are mild enough to be treated medically.

Prior to surgery and surgery alternatives:
The danger of pyloric stenosis comes from the dehydration and electrolyte disturbance rather than the underlying problem itself. Therefore, the baby must be initially stabilized by correcting the dehydration and hypochloremic alkalosis with IV fluids. This can usually be accomplished in about 24–48 hours.

Intravenous and oral atropine may be used to treat pyloric stenosis. It has a success rate of 85-89% compared to nearly 100% for pyloromyotomy, however it requires prolonged hospitalization, skilled nursing and careful follow up during treatment. It might be an alternative to surgery in children who have contraindications for anesthesia or surgery.

Surgery
The definitive treatment of pyloric stenosis is with surgical pyloromyotomy known as Ramstedt’s procedure (dividing the muscle of the pylorus to open up the gastric outlet). This is a relatively straightforward surgery that can possibly be done through a single incision (usually 3–4 cm long) or laparoscopically (through several tiny incisions), depending on the surgeon’s experience and preference.
CLICK & SEE THE PICTURES
Today, the laparoscopic technique has largely supplanted the traditional open repairs which involved either a tiny circular incision around the navel or the Ramstedt procedure. Compared to the older open techniques, the complication rate is equivalent, except for a markedly lower risk of wound infection.[9] This is now considered the standard of care at the majority of Children Hospitals across the US, although some surgeons still perform the open technique. Following repair, the small 3mm incisions are hard to see.

The vertical incision, pictured and listed above, is no longer usually required. Though many incisions have been horizontal in the past years.

Once the stomach can empty into the duodenum, feeding can commence. Some vomiting may be expected during the first days after surgery as the gastro-intestinal tract settles. Very occasionally the myotomy was incomplete and projectile vomiting continues, requiring repeat surgery. But the condition generally has no long term side-effects or impact on the child’s future.

Prognosis:
Surgery usually provides complete relief of symptoms. The infant can usually tolerate small, frequent feedings several hours after surgery.

Prevention
There are no known ways of preventing pyloric stenosis, although it is possible that breastfeeding might reduce the risk.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
http://en.wikipedia.org/wiki/Pyloric_stenosis
http://www.mayoclinic.com/health/pyloric-stenosis/DS00815
http://www.nlm.nih.gov/medlineplus/ency/article/000970.htm
http://www.bbc.co.uk/health/physical_health/conditions/pyloricstenosis.shtml
http://www.empowher.com/media/reference/pyloric-stenosis

Categories
Ailmemts & Remedies Pediatric

Plagiocephaly

Definition:
The skull isn’t perfectly smooth – it’s covered with lumps, dips and some flatter areas. But sometimes a large area of flattening distorts the skull, making it look parallelogram-shaped. This is known as plagiocephaly.

The most common form is positional plagiocephaly. It occurs when a baby’s head develops a flat spot due to pressure on that area. Babies are vulnerable because their skull is soft and pliable when they’re born.

CLICK & SEE THE PICTURES

Positional plagiocephaly typically develops after birth when babies spend time in a position that puts pressure on one part of the skull. Because babies spend so much time lying on their back, for example, they may develop a flat spot where their head presses against the mattress.

Starting in the early 1990s, parents were told to put their babies to sleep on their back to reduce the risk of SIDS. While this advice has saved thousands of babies’ lives, experts have noticed a fivefold increase in misshapen heads since then.

More rarely, babies develop positional plagiocephaly when movement in the uterus is constricted for some reason – because their mother is carrying more than one baby, for example. It can also happen to breech babies who get wedged under their mother’s ribs.

Another type of plagiocephaly is craniosynostosis, a birth defect in which the joints between the bones of the skull close early. Babies born with craniosynostosis need surgery to allow their brain to grow properly.

Symptoms
Plagiocephaly may become apparent at different ages, depending on the cause. Some babies are born with a flat head (this may be a temporary deformity due to the baby’s passage down the birth canal), while others develop it later as the bones of the skull fuse. The abnormal shape can best be seen if you look down on the baby’s head from above.

Signs of plagiocephaly include:
CLICK & SEE THE PICTURES
•Parallelogram-shaped skull when viewed from above
•Flattening on one side at the back of the head, with a compensatory protrusion or bulge in the forehead on the same side
•Eyes appearing to have unequal positioning
•A bald spot on flattened side (may be asymmetrical)

To learn more you may click to see :Plagiocephaly, Brachycephaly, Brachycephaly with Plagiocephaly and Scaphocephaly

Causes & Risk Factors:
A baby’s skull is very soft and can be forced to grow in different directions fairly easily. When the skull is kept in one particular position for long periods – because the baby is sleeping in a set position (such as on his back) or because muscles attached to the skull go into spasm (known as torticollis) – areas of the skull may be squashed or pulled flat. This is known as positional or deformation plagiocephaly. It generally gets better by itself over time.

Other factors that increase the risk of plagiocephaly include a multiple birth pregnancy (as the babies ‘squash together’ in the womb), prematurity, poor muscle tone and a condition known as oligohydramnios, where there’s insufficient fluid in the womb to cushion the baby.

In the US at least, plagiocephaly has become more common in recent years. Statistics show that while one in 300 healthy infants was affected in 1992, by 1999 one in 60 had the condition.

This increase is thought to be due to the Back to Sleep campaign, designed to reduce the number of sudden infant deaths (cot deaths).

It’s possible to prevent positional plagiocephaly by changing your baby’s resting position frequently. Your baby still needs to be laid on their back to sleep, but try to alternate the position of the head and encourage them to spend time on their tummy while they’re awake and supervised.

Switch between putting them in a sloping chair, car seat or sling, or on a flat surface, so there’s no constant pressure on one area of the skull.Prolonge keeping the baby in the carseat is  very dengerous for the babies.

Plagiocephaly may also be caused by the bones of the skull joining together abnormally early. These bones normally grow together slowly so the skull expands in all directions. But if some fuse too soon (craniosynostosis), that part of the skull can’t grow in the way it should, pulling the head out of shape. This may occur in isolation, or as part of a genetic syndrome such as Apert syndrome or Crouzon syndrome.

Many vaginally delivered babies are born with an oddly shaped head caused by the pressure of passing through the birth canal. This usually corrects itself within about six weeks. But if your baby’s head hasn’t rounded out by age 6 weeks – or if you first notice that your baby has a flat spot on her skull after 6 weeks of age – it’s probably a case of positional plagiocephaly.

Plagiocephaly shows up most often in babies who are reported to be “good sleepers,” babies with unusually large heads, and babies who are born prematurely and have weak muscle tone.

Babies with torticollis can also develop a flat spot on their skull because they often sleep with their head turned to one side. Torticollis occurs when a tight or shortened muscle on one side of the neck causes the chin to tilt to the other side. Premature babies are especially prone to torticollis

Diagnosis:
Most often, your child’s doctor can make the diagnosis of positional plagiocephaly simply by examining your child’s head, without having to order lab tests or X-rays. The doctor will also note whether regular repositioning of your child’s head during sleep successfully reshapes the child’s growing skull over time, whereas craniosynostosis, on the other hand, typically worsens over time.

If there’s still some doubt, X-rays or a CT scan of the head will show your child’s doctor if the skull bones are normally separated or if they fused together too soon. If the bones aren’t fused, the doctor will probably rule out craniosynostosis and confirm that the child has positional plagiocephaly.

It’s important the type and cause of plagiocephaly are determined, as each requires different treatment. X-rays, CT scans and other tests may be needed to confirm diagnosis.

Treatment:
The condition will sometimes improve as the baby grows, but in many cases, treatment can significantly improve the shape of a baby’s head. Initially, treatment usually takes the form of reducing the pressure on the affected area through repositioning of the baby onto his or her tummy for extended periods of time throughout the day. Other treatments include repositioning the child’s head throughout the day so that the rounded side of the head is placed dependent against the mattress, repositioning cribs and other areas that infants spend time in so that they will have to look in a different direction to see their parents, or others in the room, repositioning mobiles and other toys for similar reasons, and avoiding extended time sleeping in car-seats (when not in a vehicle), bouncy seats, or other supine seating which is thought to exacerbate the problem. If the child appears to have discomfort or cries when they are repositioned, they may have a problem with the neck.  If this is unsuccessful, treatment using a cranial remoulding orthosis (baby helmet) can help to correct abnormal head shapes. These helmets are used to treat deformational plagiocephaly, brachycephaly, scaphocephaly and other head shape deformities in infants 3-18 months of age. For years, infants have been successfully treated with cranial remolding orthoses. A cranial remolding orthoses (helmet) provides painless total contact over the prominent areas of the skull and leaves voids over the flattened areas to provide a pathway for more symmetrical skull growth. Treatment generally takes 3-4 months, but varies depending on the infant’s age and severity of the cranial asymmetry.

Prognosis:
There are some beginning studies that indicate that babies with plagiocephaly tend to have learning difficulties later on in school, however these studies are still early, and do not yet represent a scientific consensus. Other more complete studies suggest that there is no evidence to suggest that plagiocephaly is harmful to brain development, vision, or hearing

Prevention:

To successfully prevent Plagiocephaly, prenatal education on skull deformation   is crucial.
Being aware of preventative measures can help reduce the chance your child will develop positional plagiocephaly. Different repositioning techniques and adequate Tummy Time are keys to prevention and also help your baby meet developmental milestones.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose

Resources:
http://www.bbc.co.uk/health/physical_health/conditions/plagiocephaly2.shtml
http://en.wikipedia.org/wiki/Plagiocephaly
http://www.babycenter.com/0_plagiocephaly-flat-head-syndrome_1187981.bc
http://www.cranialtech.com/index.php?option=com_content&view=article&id=73&Itemid=76
http://www.cranialtech.com/
http://www.monroeoandp.com/diagnosis_of_plagiocephaly.html

Enhanced by Zemanta
Categories
Ailmemts & Remedies Pediatric

Oral thrush

Alternative Names: Candidiasis – oral; Oral thrush; Fungal infection – mouth; Candide – oral

Definition:
Oral thurs  is an infection of yeast fungi of the genus Candida on the mucous membranes of the mouth and tongue. It is frequently caused by Candida albicans, or less commonly by Candida glabrata or Candida tropicalis. Oral thrush may refer to candidiasis in the mouths of babies, while if occurring in the mouth or throat of adults it may also be termed candidosis or moniliasis…

click to see the pictures….(01)..(1)…..…(2)....

Although oral thrush can affect anyone, it’s more likely to occur in babies and people who wear dentures, use inhaled corticosteroids or have compromised immune systems. Oral thrush is a minor problem if you’re healthy, but if you have a weakened immune system, symptoms of oral thrush may be more severe and difficult to control.

Symtoms:
Signs and symptoms of oral infection by Candida species may not be immediately noticeable but can develop suddenly and may persist for a long time. The infection usually appears as thick white or cream-colored deposits on mucosal membranes such as the tongue, inner cheeks, gums, tonsils, and palate. The infected mucosa may appear inflamed (red and possibly slightly raised) and sometimes have a cottage cheese-like appearance. The lesions can be painful and will become tender and often bleed if rubbed or scraped. Cracking at the corners of the mouth, a cottony-like sensation inside the mouth, and even temporary loss of taste can occur.

In more severe cases, the infection can spread down the esophagus and cause difficulty swallowing – this is referred to as Esophageal candidiasis. Thrush does not usually cause a fever unless the infection has spread beyond the esophagus to other body parts, such as the lungs (systemic candidiasis).

click to  see….>…....(1)..…...(2.)

In addition to the distinctive lesions, infants can become irritable and may have trouble feeding. The infection can be communicated during breast-feeding to and from the breast and the infant’s mouth repeatedly

Causes:
Thrush is caused by forms of a fungus called Candida. A small amount of this fungus lives in your mouth most of the time. It is usually kept in check by your immune system and other types of germs that also normally live in your mouth.

However, when your immune system is weaker, the fungus can grow, leading to sores (lesions) in your mouth and on your tongue. The following can increase your chances of getting thrush:

•Taking steroid medications
•Having an HIV infection or AIDS
•Receiving chemotherapy for cancer or drugs to suppress your immune system following an organ transplant
•Being very old or very young
•Being in poor health
Thrush is commonly seen in infants. It is not considered abnormal in infants unless it lasts longer than a couple of weeks.

Candida can also cause yeast infections in the vagina.

People who have diabetes and had high blood sugar levels are more likely to get thrush in the mouth (oral thrush), because the extra sugar in your saliva acts like food for Candida.

Taking high doses of antibiotics or taking antibiotics for a long time also increases the risk of oral thrush. Antibiotics kill some of the healthy bacteria that help keep Candida from growing too much.

People with poorly fitting dentures are also more likely to get thrush.

Risk Factors:
*Newborn babies.

*Diabetics with poorly controlled diabetes.

*As a side effect of medication, most commonly having taken antibiotics. Inhaled corticosteroids for treatment of lung conditions (e.g., asthma or COPD) may also result in oral candidiasis: the risk may be reduced by regularly rinsing the mouth with water after taking the medication.

*People with an immune deficiency (e.g. as a result of AIDS/HIV or chemotherapy treatment).

*Women undergoing hormonal changes, like pregnancy or those on birth control pills.

*Denture users.

*Tongue piercing

Complications:
Oral thrush is seldom a problem for healthy children and adults, although the infection may return even after it’s been treated. For people with compromised immune systems, however, thrush can be more serious.

If you have HIV, you may have especially severe symptoms in your mouth or esophagus, which can make eating painful and difficult. If the infection spreads to the intestines, it becomes difficult to receive adequate nutrition. In addition, thrush is more likely to spread to other parts of the body if you have cancer or other conditions that weaken the immune system. In that case, the areas most likely to be affected include the digestive tract, lungs and liver.

Diagnosis;
Oral thrush can usually be diagnosed simply by looking at the lesions, but sometimes a small sample is examined under a microscope to confirm the diagnosis.

In older children or adolescents who have no other identified risk factors, an underlying medical condition may be the cause of oral thrush. If your doctor suspects that to be the case, your doctor will perform a physical exam as well as recommend certain blood tests to help find the source of the problem.

If thrush is in your esophagus
Thrush that extends into the esophagus can be serious. To help diagnose this condition, your doctor may ask you to have one or more of the following tests:

*Throat culture. In this procedure, the back of your throat is swabbed with sterile cotton and the tissue sample cultured on a special medium to help determine which bacteria or fungi, if any, are causing your symptoms.

*Endoscopic examination. In this procedure, your doctor examines your esophagus, stomach and the upper part of your small intestine (duodenum), using a lighted, flexible tube with a camera on the tip (endoscope).

Treatment:
For thrush in infants, treatment is often NOT necessary. It generally gets better on its own within 2 weeks.

If you develop a mild case of thrush after taking antibiotics, eating yogurt or taking over-the-counter acidophilus capsules can help.

Use a soft toothbrush and rinse your mouth with a diluted 3% hydrogen peroxide solution several times a day.

Good control of blood sugar levels in persons with diabetes may be all that is needed to clear a thrush infection.

Your doctor may prescribe an antifungal mouthwash (nystatin) or lozenges (clotrimazole) to suck on if you have a severe case of thrush or a weakened immune system. These products are usually used for 5 – 10 days. If they don’t work, other medication may be prescribed.

If the infection has spread throughout your body or you have HIV/AIDS, stronger medications may be used, such as fluconazole (Diflucan) or ketoconazole (Nizoral).

Prognosis:
Thrush in infants may be painful, but is rarely serious. Because of discomfort, it can interfere with eating. If it does not resolve on its own within 2 weeks, call your pediatrician.

In adults, thrush that occurs in the mouth can be cured. However, the long-term outlook is dependent on your immune status and the cause of the immune deficit.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose

Resources:
http://www.nlm.nih.gov/medlineplus/ency/article/000626.htm
http://en.wikipedia.org/wiki/Oral_candidiasis
http://www.bbc.co.uk/health/physical_health/conditions/oralthrush2.shtml
http://www.mayoclinic.com/health/oral-thrush/DS00408

http://www.nlm.nih.gov/medlineplus/ency/imagepages/17284.htm

http://www.clivir.com/lessons/show/yeast-infection-in-mouth-and-throat.html

Enhanced by Zemanta
css.php