Categories
Herbs & Plants

Rhus punjabensis sinica

 

[amazon_link asins=’B0006NXGNY,B005P0XMNW,B000COH5F2,B0083UU6M6,B00NB3ZMBA,B0058AD8NI,B003TL4706′ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’ccf9cd9c-b60e-11e7-af3b-85bd5e3d37c6′]

Botanical Name: Rhus punjabensis sinica
Family : Anacardiaceae
Genus: Rhus
Species: R. coriaria
Kingdom: Plantae
Order: Sapindales

Synonyms: Rhus sinica, Rhus hemyi Diels,Rhus sinica Koehne.

Common  Chinese Name:Qingfuyang

Habitat :Rhus punjabensis sinica is native to E. Asia – Himalayas.(Sichuan, Yunnan, Gansu, Henan, Shaanxi, Shanxi)It grows in moist situations in valleys and ravines, thickets and forests at elevations of 460 – 3000 metres in Tibet and western China.

Description:
Rhus punjabensis sinica is a deciduous Tree growing to 12 m (39ft 4in).
It is not frost tender. It is in flower in June, and the seeds ripen from Aug to September. The flowers are dioecious (individual flowers are either male or female, but only one sex is to be found on any one plant so both male and female plants must be grown if seed is required) and are pollinated by Bees.The plant is not self-fertile. CLICK & SEE THE PICTURES:  
Suitable for: light (sandy), medium (loamy) and heavy (clay) soils and prefers well-drained soil. Suitable pH: acid, neutral and basic (alkaline) soils. It cannot grow in the shade. It prefers moist soil.

Cultivation:
Succeeds in a well-drained fertile soil in full sun. The young growth in spring can be damaged by late frosts. This species is closely allied to R. potaninii. This is the form of R. punjabensis that is most commonly grown in Britain. Plants have brittle branches and these can be broken off in strong winds. Plants are also susceptible to coral spot fungus. Plants in this genus are notably resistant to honey fungus. Many of the species in this genus are highly toxic and can also cause severe irritation to the skin of some people, whilst other species such as this one are not poisonous. It is relatively simple to distinguish which is which, the poisonous species have axillary panicles and smooth fruits whilst non-poisonous species have compound terminal panicles and fruits covered with acid crimson hairs. The toxic species are sometimes separated into their own genus, Toxicodendron, by some botanists. Dioecious. Male and female plants must be grown if seed is required.

Propagation:
Seed – best sown in a cold frame as soon as it is ripe. Pre-soak the seed for 24 hours in hot water (starting at a temperature of 80 – 90c and allowing it to cool) prior to sowing in order to leach out any germination inhibitors. This soak water can be drunk and has a delicious lemon-flavour. The stored seed also needs hot water treatment and can be sown in early spring in a cold frame. When they are large enough to handle, prick the seedlings out into individual pots and grow them on in the greenhouse for their first winter. Plant them out into their permanent positions in late spring or early summer, after the last expected frosts. Cuttings of half-ripe wood, 10cm with a heel, July/August in a frame. Root cuttings 4cm long taken in December and potted up vertically in a greenhouse. Good percentage. Suckers in late autumn to winter.

Edible Uses:
Fruit – raw or cooked. The fruit is small with very little flesh, but it is produced in fairly large panicles and so is easily harvested. When soaked for 10 – 30 minutes in hot or cold water it makes a very refreshing lemonade-like drink (without any fizz of course). The mixture should not be boiled since this will release tannic acids and make the drink astringent.

Medicinal Uses:
An excrescence produced on the leaf by an insect Melaphis chinensis or M. paitan is antiseptic, astringent and haemostatic. It is used in the treatment of persistent cough with blood, chronic diarrhoea, spontaneous sweating, night sweats, bloody stool, urorrhoea and bloody sputum. It is used applied externally to burns, bleeding due to traumatic injuries, haemorrhoids and ulcers in the mouth.

Other Uses:
An oil is extracted from the seeds. It attains a tallow-like consistency on standing and is used to make candles. These burn brilliantly, though they emit a pungent smoke. The leaves are rich in tannin. They can be collected as they fall in the autumn and used as a brown dye or as a mordant.

Known Hazards: There are some suggestions that the sap of this species can cause a skin rash in susceptible people, but this has not been substantiated. See also notes in ‘Cultivation’

Disclaimer : The information presented herein is intended for educational purposes only. Individual results may vary, and before using any supplement, it is always advisable to consult with your own health care provider.

Resources:

Rhus punjabensis


http://www.pfaf.org/USER/Plant.aspx?LatinName=Rhus+punjabensis+sinica
http://base.sp2000.cn/colchina_e15/show_species_details.php?name_code=4e094de4-1112-484d-bdf7-2b7d6c131cb3

Categories
Ailmemts & Remedies

Epstein-Barr infection

Description: The Epstein-Barr virus, also called EBV, is an extremely common virus that infects most people at one time or another during their lifetimes. There are several forms of Epstein–Barr virus infection. Infectious mononucleosis, nasopharyngeal carcinoma, and Burkitt’s lymphoma can all be caused by the Epstein–Barr virus.

click & see

It is best known as the cause of infectious mononucleosis (glandular fever). It is also associated with particular forms of cancer, such as Hodgkin’s lymphoma, Burkitt’s lymphoma, nasopharyngeal carcinoma, and conditions associated with human immunodeficiency virus (HIV), such as hairy leukoplakia and central nervous system lymphomas. There is evidence that infection with the virus is associated with a higher risk of certain autoimmune diseases, especially dermatomyositis, systemic lupus erythematosus, rheumatoid arthritis, Sjögren’s syndrome, and multiple sclerosis.

Infection with EBV occurs by the oral transfer of saliva and genital secretions.

Most people become infected with EBV and gain adaptive immunity. In the United States, about half of all five-year-old children and 90 to 95 percent of adults have evidence of previous infection. Infants become susceptible to EBV as soon as maternal antibody protection disappears. Many children become infected with EBV, and these infections usually cause no symptoms or are indistinguishable from the other mild, brief illnesses of childhood. In the United States and other developed countries, many people are not infected with EBV in their childhood years. When infection with EBV occurs during adolescence, it causes infectious mononucleosis 35 to 50 percent of the time.

EBV infects B cells of the immune system and epithelial cells. Once the virus’s initial lytic infection is brought under control, EBV latently persists in the individual’s B cells for the rest of the individual’s life.

Symptoms:
Epstein-Barr virus infection generally causes a minor cold-like or flu-like illness, but, in some cases, there may be no symptoms of infection.Initial symptoms of infectious mononucleosis are fever, sore throat, and swollen lymph glands. Sometimes, a swollen spleen or liver involvement may develop. Heart problems or involvement of the central nervous system occurs only rarely, and infectious mononucleosis is almost never fatal. There are no known associations between active EBV infection and problems during pregnancy, such as miscarriages or birth defects. Although the symptoms of infectious mononucleosis usually resolve in 1 or 2 months, EBV remains dormant or latent in a few cells in the throat and blood for the rest of the person’s life. Periodically, the virus can reactivate and is commonly found in the saliva of infected persons. Reactivated and post-latent virus may pass the placental barrier in (also seropositive) pregnant women via macrophages and therefore can infect the fetus. Also re-infection of prior seropositive individuals may occur. In contrast, reactivation in adults usually occurs without symptoms of illness.

EBV also establishes a lifelong dormant infection in some cells of the body’s immune system. A late event in a very few carriers of this virus is the emergence of Burkitt’s lymphoma and nasopharyngeal carcinoma, two rare cancers. EBV appears to play an important role in these malignancies, but is probably not the sole cause of disease.

Most individuals exposed to people with infectious mononucleosis have previously been infected with EBV and are not at risk for infectious mononucleosis. In addition, transmission of EBV requires intimate contact with the saliva (found in the mouth) of an infected person. Transmission of this virus through the air or blood does not normally occur. The incubation period, or the time from infection to appearance of symptoms, ranges from 4 to 6 weeks. Persons with infectious mononucleosis may be able to spread the infection to others for a period of weeks. However, no special precautions or isolation procedures are recommended, since the virus is also found frequently in the saliva of healthy people. In fact, many healthy people can carry and spread the virus intermittently for life. These people are usually the primary reservoir for person-to-person transmission. For this reason, transmission of the virus is almost impossible to prevent.

The clinical diagnosis of infectious mononucleosis is suggested on the basis of the symptoms of fever, sore throat, swollen lymph glands, and the age of the patient. Usually, laboratory tests are needed for confirmation. Serologic results for persons with infectious mononucleosis include an elevated white blood cell count, an increased percentage of certain atypical white blood cells, and a positive reaction to a “mono spot” test.
Causes:
Epstein–Barr can cause infectious mononucleosis, also known as ‘glandular fever’, ‘Mono‘ and ‘Pfeiffer’s disease’. Infectious mononucleosis is caused when a person is first exposed to the virus during or after adolescence. Though once deemed “The Kissing Disease,” recent research has shown that transmission of EBV not only occurs from exchanging saliva, but also from contact with the airborne virus. It is predominantly found in the developing world, and most children in the developing world are found to have already been infected by around 18 months of age. Infection of children can occur when adults mouth feed or pre-chew food before giving it to the child. EBV antibody tests turn up almost universally positive.

Treatment:
There is no specific treatment for infectious mononucleosis, other than treating the symptoms. No antiviral drugs or vaccines are available. Some physicians have prescribed a 5-day course of steroids to control the swelling of the throat and tonsils. The use of steroids has also been reported to decrease the overall length and severity of illness, but these reports have not been published.

It is important to note that symptoms related to infectious mononucleosis caused by EBV infection seldom last for more than 4 months. When such an illness lasts more than 6 months, it is frequently called chronic EBV infection. However, valid laboratory evidence for continued active EBV infection is seldom found in these patients. The illness should be investigated further to determine if it meets the criteria for chronic fatigue syndrome, or CFS. This process includes ruling out other causes of chronic illness or fatigue.

Prognosis:
There is currently no specific cure for an Epstein-Barr virus infection. Treatment includes measures to help relieve symptoms and keep the body as strong as possible until the disease runs its course. This includes rest, medications to ease body aches and fever, and drinking plenty of fluids. People who are in good health can generally recover from an Epstein-Barr virus infection at home with supportive care, such as rest, fluids and pain relievers.

Prevention:
Treatment of most viral diseases begins with preventing the spread of the disease with basic hygiene measures. However, controlling the spread of the Epstein-Barr virus is extremely difficult because it is so common and because it is possible to spread the Epstein-Barr virus even when a person does not appear sick. Many healthy people who have had an Epstein-Barr virus infection continue to carry the virus in their saliva, which means they can spread it to others throughout their lifetimes. However, avoiding contact with another person’s saliva by not sharing drinking glasses or toothbrushes is still a good general disease prevention measure.

Regular exercise with healthy food habits and healthy life style is the best way of prevention.

Research:
As a relatively complex virus, EBV is not yet fully understood. Laboratories around the world continue to study the virus and develop new ways to treat the diseases it causes. One popular way of studying EBV in vitro is to use bacterial artificial chromosomes.  Epstein–Barr virus and its sister virus KSHV can be maintained and manipulated in the laboratory in continual latency. Although many viruses are assumed to have this property during infection of their natural host, they do not have an easily managed system for studying this part of the viral lifecycle. Genomic studies of EBV have been able to explore lytic reactivation and regulation of the latent viral episome.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.
Resources:
http://en.wikipedia.org/wiki/Epstein%E2%80%93Barr_virus
http://en.wikipedia.org/wiki/Epstein–Barr_virus_infection
http://www.healthgrades.com/conditions/epstein-barr-virus

Categories
News on Health & Science

SOME INFORMATION ABOUT CANCER CELL

[amazon_link asins=’B00AFHBWGO,0465072763′ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’0ff9b558-37e9-11e7-862c-9b7b7252d1f4′]

You may click tom see the pictures...>...(1).....(2)...(3)...(4)…….(5).….…(6)….(7)...(8)(9)...(10)

.

1. Every person has cancer cells in the body. These cancer cells do not show up in the standard tests until they have multiplied to a few billion. When doctors tell cancer patients that there are no more cancer cells in their bodies after treatment, it just means the tests are unable to detect the cancer cells because they have  not reached the detectable size.

2. Cancer cells occur between 6 to more than 10 times in a person’s lifetime.

3. When the person’s immune system is strong the cancer cells will be destroyed and prevented from multiplying and forming tumors.

click to see

 

4. When a person has cancer it indicate the person has multiple nutritional deficiencies. These could be due to genetic, environmental, food and lifestyle factors.

5. To overcome the multiple nutritional deficiencies, changing diet and including supplements will strengthen the immune system.

6. Chemotherapy involves poisoning the rapidly-growing cancer cells and also destroys rapidly-growing healthy cells in the bone marrow, gastro-intestinal tract etc, and can cause organ damage, like liver, kidneys, heart, lungs etc.

7. Radiation while destroying cancer cells also burns, scars and damages healthy cells, tissues and organs.

8. Initial treatment with chemotherapy and radiation will often reduce tumor size. However prolonged use of chemotherapy and radiation do not result in more tumor destruction.

click to see

9. When the body has too much toxic burden from chemotherapy and radiation the immune system is either compromised or destroyed, hence the person can succumb to various kinds of infections and complications.

 10. Chemotherapy and radiation can cause cancer cells to mutate and become resistant and difficult to destroy. Surgery can also cause cancer cells to spread to other sites.

11. An effective way to battle cancer is to STARVE the cancer cells by not feeding it with foods it needs to multiple.

click to see

click  to see

What cancer cells feed on:  

a. Sugar is a cancer-feeder. By cutting off sugar it cuts off one important food supply to the cancer cells. Note: Sugar substitutes like NutraSweet, Equal, Spoonful, etc are made with Aspartame and it is harmful. A better natural substitute would be Manuka honey or molasses but only in very small amounts. Table salt has a chemical added to make it white in colour. Better alternative is Bragg’s aminos or sea salt. Protein having with 9 amino acids is more helpful whose PDCAAS score is 1.0.

b. Milk causes the body to produce mucus, especially in the gastro-intestinal tract. Cancer feeds on mucus. By cutting off milk and substituting with unsweetened soy milk, cancer cells will starved. High source of Fiber is more helpful.

c. Cancer cells thrive in an acid environment. A meat-based diet is acidic and it is best to eat fish, and a little chicken rather than beef or pork. Meat also contains livestock antibiotics, growth hormones and parasites, which are all harmful, especially to people with cancer. Protein having with 9 amino acids is more helpful whose PDCAAS score is 1.0.

d. A diet made of 80% fresh vegetables and juice, whole grains, seeds, nuts and a little fruits help put the body into an alkaline environment. About 20% can be from cooked food including beans. Fresh vegetable juices provide live enzymes that are easily absorbed and reach down to cellular levels within 15 minutes t o nourish and enhance growth of healthy cells. Good sources of Vitamins & Minerals are more effective.

To obtain live enzymes for building healthy cells try and drink fresh vegetable juice (most vegetables including bean sprouts) and eat some raw vegetables 2 or 3 times a day. Enzymes are destroyed at temperatures of 104 degrees F (40 degrees C). High contain of Vitamin “C” (like Accelera Cherry) is also more helpful.

e. Avoid coffee, tea, and chocolate, which have high caffeine. Green tea is a better alternative and has cancer-fighting properties. Water–best to drink purified water, or filtered, to avoid known toxins and heavy metals in tap water. Distilled water is acidic, avoid it.

12. Meat protein is difficult to digest and requires a lot of digestive enzymes. Undigested meat remaining in the intestines will become putrified and leads to more toxic buildup. Protein having with 9 amino acids is more helpful whose PDCAAS score is 1.0.

13. Cancer cell walls have a tough protein covering. By refraining from or eating less meat it frees more enzymes to attack the protein walls of cancer cells and allows the body’s killer cells to destroy the cancer cells.

14. Some supplements build up the immune system (IP6, Flor-ssence, Essiac, anti-oxidants, vitamins, minerals, EFAs etc.) to enable the body’s own killer cells to destroy cancer cells. Other supplements like vitamin E are known to cause apoptosis, or programmed cell death, the body’s normal method of disposing of damaged, unwanted, or unneeded cells.

15. Cancer is a disease of the mind, body, and spirit. A proactive and positive spirit will help the cancer warrior be a survivor.

Anger, unforgiving and bitterness put the body into a stressful and acidic environment. Learn to have a loving and forgiving spirit. Learn to relax and enjoy life.

16. Cancer cells cannot thrive in an oxygenated environment. Exercising daily, and deep breathing help to get more oxygen down to the cellular level. Oxygen therapy is another means employed to destroy cancer cells.

Click  & read : Delivering cancer drugs, bang on target   

Source:Information  received through an email

Enhanced by Zemanta
Categories
News on Health & Science

Freedom From the Daily JAB

[amazon_link asins=’B01BURN526,B01N0SA79U,B01JXP3BHQ,B072JXCRGD,B002CPXTBI,B07497KJ1S,B01N1TSIX3′ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’0c611da5-db5a-11e7-adeb-a7135be59b3b’]

Indian scientists are using tissue engineering to give diabetes patients new insulin-making cells……...CLICK & SEE

Biomaterials scientist Prabha Nair is pitting her expertise of polymers to hold out a new line of hope for patients with diabetes who are dependent on insulin shots. In her laboratory, she has used two structures fashioned out of polymer materials to normalise blood sugar in rats with diabetes for up to 90 days. One of the polymer structures is designed to make insulin-secreting cells function properly, while the other is intended to protect such cells from threats that might emerge from the body’s immune system.

Nair and her colleagues at the government-funded Sree Chitra Tirunal Institute of Medical Sciences and Technology (SCTIMST), Thiruvananthapuram have combined two applications of polymers to tackle two major obstacles that have held back a promising but experimental treatment for diabetes from widespread use. The treatment, called islet cell transplantation, involves the removal of insulin-secreting cells from the pancreas of a deceased organ donor and their implantation into a patient with diabetes.

It is nearly a decade since researchers at the University of Alberta in Edmonton, Canada, demonstrated that islet cell transplantation may help patients with diabetes acquire normal blood sugar levels and achieve some level of freedom from the need for insulin.

A review of islet transplantation on 225 patients between 1999 and 2006 had revealed several benefits — including reduced need for insulin, improved blood glucose control, and lowered risk of hypoglycemia, according to the National Institute of Diabetes and Digestive and Kidney Disorders in the US. Two years after the islet transplantation, about one-third of the recipients were free of the need for insulin shots, the review suggested.

Islet cell transplantation, however, is not standard therapy yet. “There is a critical shortage of islet cells because of a shortage of organ donors,” says Nair, a scientist in the division of tissue engineering and regeneration technologies at the SCTIMST.

Patients who receive islet cells need to take immunosuppressive drugs throughout their lives to prevent their immune systems from destroying the implanted cells. These drugs have side effects including an increased risk of cancer.

The SCTIMST researchers harvested a class of cells known as pancreatic progenitor cells from mice and placed them in a cocktail of appropriate biochemicals where they turn into insulin-secreting islet-like cells.

The scientists then loaded these islet-like cells into three-dimensional scaffolds constructed out of a gelatin, a natural polymer, and polyvinylpyrrolidone, a synthetic polymer. The islet-like cells proliferate on the scaffolds and serve as a potential source of insulin.

In experiments, the scientists observed that rats with diabetes that received these islet cell-bearing scaffolds alone died within 20 days. Their scaffold cells had been attacked by the rats’ immune systems, leading to the destruction of tissue and the failure of the implantation.

“We also designed a polymer capsule to shield the implanted islet cells from the immune system,” Nair told KnowHow. When the scientists combined the scaffolding, also called tissue engineering, with encapsulation, the rats survived for up to 90 days.

The rats were models for type-I, or insulin-dependent diabetes, but researchers say the tissue engineering and encapsulation strategy may also be considered as a possible option for patients with adult-onset diabetes who need insulin injections. Given the differences in the lifespans of rats and humans, some researchers believe the 90-day freedom from insulin observed in the laboratory animals may be equivalent to several years in humans — although exactly how long is still a subject of debate.

“These results are really exciting,” says Aroop Dutta, a tissue engineering specialist and founder of ExCel Matrix Biologicals, a Hyderabad-based start-up in biomaterials and tissue engineering, who was not connected with the research in Thiruvananthapuram.

“There just aren’t enough human-derived islet cells for the large numbers of diabetes patients dependent on insulin. Animal cells or stem cell-based approaches are the only viable options as sustained sources of islet cells,” he adds.

The results of the SCTIMST’s experiments were published last Friday in the journal Acta Biomaterialia. The researchers say their use of islet cells from mice in rats with diabetes suggests that the polymer capsule that keeps the immune system at bay may facilitate xenotransplants — the use of cells or organs across species — as an option for reversing diabetes. “But there is still much work to be done,” Nair cautions.

“We’ll need to establish that this also works in large animals,” she said. The SCTIMST group plans to initiate studies in pigs with diabetes. If the technique is indeed shown to work in large animals too, it could be ready for human clinical trials within two or three years.

Source : The Telegraph ( kolkata, India)

Enhanced by Zemanta
Categories
News on Health & Science Pediatric

Phthalates Cause Inflammation in At-Risk Babies

Researchers have identified a direct link between substances that make plastics more pliable, and inflammation in newborns. They are encouraging limiting the use of the plasticizers.
CLICK & SEE
Premature babies are exposed to extraordinarily high concentrations of phthalates due to exposure to plastic medical equipment used during neonatal intensive care.

Many of the diseases unique to premature babies, including the lung disorder bronchopulmonary dysplasia and the intestinal ailment necrotizing enterocolitis, are associated with excessive inflammation.

Newswise reports:

“… [There is] direct evidence that the presence of phthalates prolongs the survival of white blood cells, which supports the idea that they are contributing to damage and to inflammation … phthalates encourage cells to produce hydrogen peroxide, which … can kill cells and damage tissues.


You may click to see :-

Health Risks of Phthalates

Resources:
Newswise July 20, 2010
Pediatric Research August 2010; 68(2):134-9

Enhanced by Zemanta
css.php