Tag Archives: Concussion

Xanthorhiza simplicissima

Botanical Name : Xanthorhiza simplicissima
Family: Ranunculaceae
Genus: Xanthorhiza
Species: X. simplicissima
Kingdom: Plantae
Division: Magnoliophyta
Class: Magnoliopsida
Order: Ranunculales

Synonyms: Xanthorhiza apiifolia, Zanthorrhiza apifolia

Common Names :Yellowroot

Habitat : Xanthorhiza simplicissima  occurs in Eastern N. America – New York to West Virginia and south to Florida and Alabama.Shaded stream banks, moist woods, thickets, and rocky ledges from sea level to 1200 metres

Description:
Xanthorhiza simplicissima is a deciduous Shrub growing to 1 m (3ft 3in) by 3 m (9ft) at a fast rate. The leaves are spirally arranged, 10-18 cm long, each divided into 5 toothed leaflets, and flowers emerge only from the upper portion of the unbranched stem. The flowers are produced in broad panicles 6-20 cm long, each flower small, star-shaped, reddish brown to purple brown, with five petals.

CLICK & SEE THE PICTURES

Yellowroot propagates asexually by sending out many underground runners, and it reproduces sexually with seeds.

It is hardy to zone 6. It is in flower from Mar to April. The flowers are hermaphrodite (have both male and female organs)

The plant prefers light (sandy), medium (loamy) and heavy (clay) soils.The plant prefers acid soils..It can grow in full shade (deep woodland) semi-shade (light woodland) or no shade.It requires moist or wet soil.

Cultivation:
Requires a moist acid soil in sun or part shade. Prefers shade or semi-shade. Succeeds in any moist fertile soil according to other reports. Hardy to about -20°c[184]. Plants can spread considerably by means of suckers, especially when they are growing in a light soil. A greedy plant, inhibiting the growth of nearby plants, especially legumes.

Propagation  :
Seed – best sown in a cold frame as soon as it is ripe in the autumn . Sow stored seed in a cold frame in late winter. When they are large enough to handle, prick the seedlings out into individual pots and grow them on in the greenhouse for at least their first winter. Plant them out into their permanent positions in late spring or early summer, after the last expected frosts. Division in the autumn or late winter

Medicinal Uses:
Antihaemorrhoidal;  AstringentStomachic;  Tonic.

The root is astringent and a blood tonic. A tea made from the roots is used to treat mouth ulcers, stomach ulcers, colds, jaundice etc. An infusion of the roots has also been used to treat piles, though the report does not specify if it is used internally or externally. Some caution is advised in the use of this plant, see the notes above on toxicity. The root contains the alkaloid ‘berberine’ which is used for its tonic properties and for digestive disorders. Berberine is anti-inflammatory, astringent, haemostatic, antispasmodic, immuno-stimulant, uterine tonic and antimicrobial. It stimulates the secretion of bile and bilirubin and may be helpful in correcting high tyramine levels in people with liver cirrhosis

Other Uses
Dye;  Ground cover.

A yellow dye is obtained from the root. The entire plant can be crushed to yield a yellow dye. A good ground cover for damp semi-shaded positions. Plants should be spaced about 1.2 metres apart each way .

Known Hazards : The root, when taken in high doses, is potentially toxic

Disclaimer:The information presented herein is intended for educational purposes only. Individual results may vary, and before using any supplements, it is always advisable to consult with your own health care provider

Resources:
http://www.pfaf.org/user/Plant.aspx?LatinName=Xanthorhiza+simplicissima
http://en.wikipedia.org/wiki/Yellowroot

Enhanced by Zemanta

Concussion

Alternative Names :Mild brain injury, Mild traumatic brain injury (MTBI), mild head injury (MHI), minor head trauma

Definition:
A concussion is a traumatic brain injury that is caused by a sudden blow to the head or to the body. The blow shakes the brain inside the skull, which temporarily prevents the brain from working normally.Effects are usually temporary, but can include problems with headache, concentration, memory, judgment, balance and coordination.

You may click to see the picture

Although concussions usually are caused by a blow to the head, they can also occur when the head and upper body are violently shaken. These injuries can cause a loss of consciousness, but most concussions do not. Because of this, some people have concussions and don’t realize it.

Concussions are common, particularly if you play a contact sport, such as football, boxing etc. But every concussion injures your brain to some extent. This injury needs time and rest to heal properly. Luckily, most concussive traumatic brain injuries are mild, and with rest, most people fully recover from concussions within a few hours to a few weeks.

On rare occasions, concussions cause more serious problems. Repeated concussions or a severe concussion may require surgery or lead to long-lasting problems with movement, learning, or speaking. Because of the small chance of permanent brain problems, it is important to contact a doctor if you or someone you know has symptoms of a concussion.

Symptoms:
It is not always easy to know if someone has a concussion. Not everyone who has a concussion passes out. A person who might have a concussion should immediately stop any kind of activity or sport. Becoming active again before the brain returns to normal functioning increases the person’s risk of having a more serious brain injury.

Symptoms of a concussion range from mild to severe and can last for hours, days, weeks, or even months. If you notice any symptoms of a concussion, contact your doctor.

Symptoms of a concussion include:
*Passing out.
*Not being able to remember what happened after the injury.
*Acting confused, asking the same question over and over, slurring words, or not being able to concentrate.
*Feeling lightheaded, seeing “stars,” having blurry vision, or experiencing ringing in the ears.
*Not being able to stand or walk; or having coordination and balance problems.
*Feeling nauseous or throwing up.

Head trauma is very common in young children. But concussions can be difficult to recognize in infants and toddlers because they can’t readily communicate how they feel. Nonverbal clues of a concussion may include:
*Listlessness, tiring easily
*Irritability, crankiness
*Change in eating or sleeping patterns
*Lack of interest in favorite toys
*Loss of balance, unsteady walking

Occasionally a person who has a more serious concussion develops new symptoms over time and feels worse than he or she did before the injury. This is called post-concussive syndrome. If you have symptoms of post-concussive syndrome, call your doctor. Symptoms of post-concussive syndrome include:

*Changes in your ability to think, concentrate, or remember.
*Headaches or blurry vision.
*Changes in your sleep patterns, such as not being able to sleep or sleeping all the time.
*Changes in your personality such as becoming angry or anxious for no clear reason.
*Lack of interest in your usual activities.
*Changes in your sex drive.
*Dizziness, lightheadedness, or unsteadiness that makes standing or walking difficult.

Causes:
Your brain is a soft organ that is surrounded by spinal fluid and protected by your hard skull. Normally, the fluid around your brain acts like a cushion that keeps your brain from banging into your skull. But if your head or your body is hit unexpectedly hard, your brain can suddenly crash into your skull and temporarily stop working normally.

There are many ways to get a concussion. Some common ways include fights, falls, playground injuries, car crashes, and bike accidents. Concussions can also happen while participating in rough or high-speed sports such as football, boxing, hockey, soccer, skiing, or snowboarding.

Risk Factors:
Factors that may increase your risk of a concussion include:

*Participating in a high risk sport, such as football, hockey, soccer or other contact sport; the risk is further increased if there’s a lack of proper safety equipment and supervision
*Being involved in a motor vehicle collision
*Being a soldier involved in combat
*Being a victim of physical abuse
*Falling, especially in young children and older adults
*Having had a previous concussion

Complications:
Potential complications of concussion include:

*Epilepsy. People who have had a concussion double their risk of developing epilepsy within the first five years after the injury.

*Cumulative effects of multiple brain injuries. Evidence exists indicating that people who have had multiple concussive brain injuries over the course of their lives may acquire lasting, and even progressive, cognitive impairment that limits functional ability.

*Second impact syndrome. Sometimes, experiencing a second concussion before signs and symptoms of a first concussion have resolved may result in rapid and typically fatal brain swelling. After a concussion, the levels of brain chemicals are altered. It usually takes about a week for these levels to stabilize again. However, the time it takes to recover from a concussion is variable, and it is important for athletes never to return to sports while they’re still experiencing signs and symptoms of concussion.
Diagnosis:
Diagnosis of Concussion is based on physical and neurological exams, duration of unconsciousness (usually less than 30 minutes) and post-traumatic amnesia (PTA; usually less than 24 hours), and the Glasgow Coma Scale (MTBI sufferers have scores of 13 to 15). Neuropsychological tests exist to measure cognitive function. The tests may be administered hours, days, or weeks after the injury, or at different times to determine whether there is a trend in the patient’s condition. Athletes may be tested before a sports season begins to provide a baseline comparison in the event of an injury.

Health care providers examine head trauma survivors to ensure that the injury is not a more severe medical emergency such as an intracranial hemorrhage. Indications that screening for more serious injury is needed include worsening of symptoms such as headache, persistent vomiting, increasing disorientation or a deteriorating level of consciousness,   seizures, and unequal pupil size. People with such symptoms, or who are at higher risk for a more serious brain injury, are CT scanned to detect brain lesions and are frequently observed for 24 – 48 hours.

If the Glasgow Coma Scale is less than 15 at two hours or less than 14 at any time a CT recommended.[8] In addition, they may be more likely to perform a CT scan on people who would be difficult to observe after discharge or those who are intoxicated, at risk for bleeding, older than 60, or younger than 16. Most concussions cannot be detected with MRI or CT scans.   However, changes have been reported to show up on MRI and SPECT imaging in concussed people with normal CT scans, and post-concussion syndrome may be associated with abnormalities visible on SPECT and PET scans. Mild head injury may or may not produce abnormal EEG readings.

Concussion may be under-diagnosed. The lack of the highly noticeable signs and symptoms that are frequently present in other forms of head injury could lead clinicians to miss the injury, and athletes may cover up their injuries to remain in the competition. A retrospective survey in 2005 found that more than 88% of concussions go unrecognized;.

Diagnosis of concussion can be complicated because it shares symptoms with other conditions. For example, post-concussion symptoms such as cognitive problems may be misattributed to brain injury when they are in fact due to post-traumatic stress disorder (PTSD).

Treatment:
Usually concussion symptoms go away without treatment, and no specific treatment exists. About one percent of people who receive treatment for MTBI need surgery for a brain injury. Traditionally, concussion sufferers are prescribed rest, including plenty of sleep at night plus rest during the day. Health care providers recommend a gradual return to normal activities at a pace that does not cause symptoms to worsen. Education about symptoms, how to manage them, and their normal time course can lead to an improved outcome.

Medications may be prescribed to treat symptoms such as sleep problems and depression. Analgesics such as ibuprofen can be taken for the headaches that frequently occur after concussion, but paracetamol (acetaminophen) is preferred to minimize the risk for complications such as intracranial hemorrhage. Concussed individuals are advised not to drink alcohol or take drugs that have not been approved by a doctor, as they could impede healing.

Observation to monitor for worsening condition is an important part of treatment. Health care providers recommend that those suffering from concussion return for further medical care and evaluation 24 to 72 hours after the concussive event if the symptoms worsen. Athletes, especially intercollegiate or professional athletes, are typically followed closely by team trainers during this period. But others may not have access to this level of health care and may be sent home with no medical person monitoring them unless the situation gets worse. Patients may be released from the hospital to the care of a trusted person with orders to return if they display worsening symptoms or those that might indicate an emergent condition, like unconsciousness or altered mental status; convulsions; severe, persistent headache; extremity weakness; vomiting; or new bleeding or deafness in either or both ears. Repeated observation for the first 24 hours after concussion is recommended; however it is not known whether it is necessary to wake the patient up every few hours.

Prognosis:
Concussion has a mortality rate of almost zero. The symptoms of most concussions resolve within weeks, but problems may persist. Problems are seldom permanent, and outcome is usually excellent. People over age 55 may take longer to heal from MTBI or may heal incompletely. Similarly, factors such as a previous head injury or a coexisting medical condition have been found to predict longer-lasting post-concussion symptoms. Other factors that may lengthen recovery time after MTBI include psychological problems such as substance abuse or clinical depression, poor health before the injury or additional injuries sustained during it, and life stress.  Longer periods of amnesia or loss of consciousness immediately after the injury may indicate longer recovery times from residual symptoms. For unknown reasons, having had one concussion significantly increases a person’s risk of having another. Having previously sustained a sports concussion has been found to be a strong factor increasing the likelihood of a concussion in the future. Other strong factors include participation in a contact sport and body mass size. The prognosis may differ between concussed adults and children; little research has been done on concussion in the pediatric population, but concern exists that severe concussions could interfere with brain development in children.

A 2009 study published in Brain found that individuals with a history of concussions might demonstrate a decline in both physical and mental performance for longer than 30 years. Compared to their peers with no history of brain trauma, sufferers of concussion exhibited effects including loss of episodic memory and reduced muscle speed.

Prevention:
The following tips may help you to prevent or minimize your risk of head injury:

*Wear appropriate protective gear during sports and other recreational activities. Always use the appropriate protective gear for any sport you or your child undertakes. Make sure the equipment fits properly, is well maintained and worn correctly. Follow the rules of the game and practice good sportsmanship. When bicycling, motorcycling, snowboarding or engaging in any recreational activity that may result in head injury, wear protective headgear.

*Buckle your seat belt. Wearing a seat belt may prevent serious injury, including an injury to your head, during a traffic accident.

*Make your home safe. Keep your home well lit and your floors free of clutter — meaning anything that might cause you to trip and fall. Falls around the home are the leading cause of head injury for infants, toddlers and older adults.

*Protect your children. To help lessen the risk of head injuries to your children, pad countertops and edges of tables, block off stairways and install window guards. Don’t let your children play sports that aren’t suitable for their ages.

*Use caution in and around swimming areas. Don’t dive into water less than 9 feet (3 meters) deep. Read and follow posted safety rules at water parks and swimming pools.

*Wear sensible shoes. If you’re older, wear shoes that are easy to walk and maneuver in. Avoid wearing high heels, sandals with thin straps, or shoes that are either too slippery or too sticky.

Prevention of  Concussion  involves taking general measures to prevent traumatic brain injury, such as wearing seat belts and using airbags in cars. Older people are encouraged to try to prevent falls, for example by keeping floors free of clutter and wearing thin, flat, shoes with hard soles that do not interfere with balance.

Use of protective equipment such as headgear has been found to reduce the number of concussions in athletes. Improvements in the design of protective athletic gear such as helmets may decrease the number and severity of such injuries. New “Head Impact Telemetry System” technology is being placed in helmets to study injury mechanisms and potentially help reduce the risk of concussions among American Football players. Changes to the rules or the practices of enforcing existing rules in sports, such as those against “head-down tackling”, or “spearing,” which is associated with a high injury rate, may also prevent concussions.

Post-concussion syndrome:
In post-concussion syndrome, symptoms do not resolve for weeks, months, or years after a concussion, and may occasionally be permanent. Symptoms may include headaches, dizziness, fatigue, anxiety, memory and attention problems, sleep problems, and irritability. There is no scientifically established treatment, and rest, a recommended recovery technique, has limited effectiveness. Symptoms usually go away on their own within months. The question of whether the syndrome is due to structural damage or other factors such as psychological ones, or a combination of these, has long been the subject of debate.

Cumulative effects:
Cumulative effects of concussions are poorly understood. The severity of concussions and their symptoms may worsen with successive injuries, even if a subsequent injury occurs months or years after an initial one. Symptoms may be more severe and changes in neurophysiology can occur with the third and subsequent concussions. Studies have had conflicting findings on whether athletes have longer recovery times after repeat concussions and whether cumulative effects such as impairment in cognition and memory occur.

Cumulative effects may include psychiatric disorders and loss of long-term memory. For example, the risk of developing clinical depression has been found to be significantly greater for retired American football players with a history of three or more concussions than for those with no concussion history.[74] Three or more concussions is also associated with a fivefold greater chance of developing Alzheimer’s disease earlier and a threefold greater chance of developing memory deficits.

Dementia pugilistica:
Chronic encephalopathy is an example of the cumulative damage that can occur as the result of multiple concussions or less severe blows to the head. The condition called dementia pugilistica, or “punch drunk” syndrome, which is associated with boxers, can result in cognitive and physical deficits such as parkinsonism, speech and memory problems, slowed mental processing, tremor, and inappropriate behavior. It shares features with Alzheimer’s disease.

Second-impact syndrome:
Second-impact syndrome, in which the brain swells dangerously after a minor blow, may occur in very rare cases. The condition may develop in people who receive a second blow days or weeks after an initial concussion, before its symptoms have gone away. No one is certain of the cause of this often fatal complication, but it is commonly thought that the swelling occurs because the brain’s arterioles lose the ability to regulate their diameter, causing a loss of control over cerebral blood flow.  As the brain swells, intracranial pressure rapidly rises. The brain can herniate, and the brain stem can fail within five minutes. Except in boxing, all cases have occurred in athletes under age 20. Due to the very small number of documented cases, the diagnosis is controversial, and doubt exists about its validity.

Epidemiology:
Most cases of traumatic brain injury are concussions. A World Health Organization (WHO) study estimated that between 70 and 90% of head injuries that receive treatment are mild. However, due to underreporting and to the widely varying definitions of concussion and MTBI, it is difficult to estimate how common the condition is. Estimates of the incidence of concussion may be artificially low, for example due to underreporting. At least 25% of MTBI sufferers fail to get assessed by a medical professional. The WHO group reviewed studies on the epidemiology of MTBI and found a hospital treatment rate of 1–3 per 1000 people, but since not all concussions are treated in hospitals, they estimated that the rate per year in the general population is over 6 per 1000 people.

Young children have the highest concussion rate among all age groups. However, most people who suffer concussion are young adults. A Canadian study found that the yearly incidence of MTBI is lower in older age groups (graph at right). Studies suggest males suffer MTBI at about twice the rate of their female counterparts. However, female athletes may be at a higher risk for suffering concussion than their male counterparts.

Up to five percent of sports injuries are concussions. The U.S. Centers for Disease Control and Prevention estimates that 300,000 sports-related concussions occur yearly in the U.S., but that number includes only athletes who lost consciousness.  Since loss of consciousness is thought to occur in less than 10% of concussions, the CDC estimate is likely lower than the real number. Sports in which concussion is particularly common include football and boxing (a boxer aims to “knock out”, i.e. give a mild traumatic brain injury to, the opponent). The injury is so common in the latter that several medical groups have called for a ban on the sport, including the American Academy of Neurology, the World Medical Association, and the medical associations of the UK, the U.S., Australia, and Canada.

Due to the lack of a consistent definition, the economic costs of MTBI are not known, but they are estimated to be very high. These high costs are due in part to the large percentage of hospital admissions for head injury that are due to mild head trauma, but indirect costs such as lost work time and early retirement account for the bulk of the costs. These direct and indirect costs cause the expense of mild brain trauma to rival that of moderate and severe head injuries.

You may click to learn more

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
http://www.bbc.co.uk/health/physical_health/conditions/concussion1.shtml
http://en.wikipedia.org/wiki/Concussion
http://www.mayoclinic.com/health/concussion/DS00320
http://www.webmd.com/brain/tc/traumatic-brain-injury-concussion-overview?page=2

Enhanced by Zemanta

Abdominal CT Scan

Introduction:
An abdominal CT scan is an imaging method that uses x-rays to create cross-sectional pictures of the belly area. CT stands for computed tomography.
CT scans are pictures taken by a specialized x-ray machine. The machine circles your body and scans an area from every angle within that circle. The machine measures how much the x-ray beams change as they pass through your body. It then relays that information to a computer, which generates a collection of black-and-white pictures, each showing a slightly different “slice” or cross-section of your internal organs. Because these “slices” are spaced only about a quarter-inch apart, they give a very good representation of your internal organs and other structures. Doctors use CT scans to evaluate all major parts of the body, including the abdomen, back, chest, and head.

..CLICK & SEE

CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the area of the body to be visualized. Using very complicated mathematical processes called algorithms, the computer is able to generate a 3-D image of a section through the body. CT scans are very detailed and provide excellent information for the physician.

A CT scan is an excellent way to view the organs inside your abdomen. It is especially useful for looking at solid organs, such as the liver, pancreas, spleen, kidneys, and adrenal glands. It is also excellent for viewing the large blood vessels that pass through the abdomen (the aorta and vena cava) and for finding lymph nodes in the abdomen. Organs that can change their shape when they are empty or full, such as stomach and intestines, are harder for a CT scan to evaluate well, because it is sometimes difficult for a doctor to tell for sure if they are abnormal. Often the CT can give some information about these organs, though. Abdominal CT scans are often used to look for signs of inflammation or infection inside the abdomen in different organs, to look for cancer, or to look for injury to one or another internal organ.

A CT scan provides a better picture of internal organs than traditional x-rays. The benefits of an abdominal CT scan usually far outweigh the risks of radiation exposure.

How the Test is Performed
You will be asked to lie on a narrow table that slides into the center of the CT scanner. Usually, you will lie on your back with your arms raised above the head.

The health care provider may inject a dye into one of your veins. This helps certain diseases and organs show up better on the images.

Once inside the scanner, the machine’s x-ray beam rotates around you. Small detectors inside the scanner measure the amount of x-rays that make it through the abdomen. A computer takes this information and creates several individual images, called slices.

You must be still during the exam, because movement causes blurred images. You may be told to hold your breath for short periods of time.

The actual scan time only takes a few minutes, although the entire procedure usually takes much longer.
A CT scan is an excellent way to view the organs inside your abdomen. It is especially useful for looking at solid organs, such as the liver, pancreas, spleen, kidneys, and adrenal glands. It is also excellent for viewing the large blood vessels that pass through the abdomen (the aorta and vena cava) and for finding lymph nodes in the abdomen. Organs that can change their shape when they are empty or full, such as stomach and intestines, are harder for a CT scan to evaluate well, because it is sometimes difficult for a doctor to tell for sure if they are abnormal. Often the CT can give some information about these organs, though. Abdominal CT scans are often used to look for signs of inflammation or infection inside the abdomen in different organs, to look for cancer, or to look for injury to one or another internal organ.

Why the Test is Performed
An abdominal CT rapidly creates detailed pictures of the belly area. The test may be used to:

*Study blood vessels
*Identify masses and tumors, including cancer
*Look for infections, kidney stones, or appendicitis
.How to Prepare for the Test
If you are having an abdominal CT scan, you might have to fast 2–4 hours before your test. You also may have to drink a large quantity of oral contrast, a fluid that will show up on the CT scan and help define the lining of some internal organs.

Tell your doctor if you’re allergic to x-ray contrast dyes, may be pregnant, or have diabetes and take insulin. Insulin can cause hypoglycemia after missing a meal. or have had difficulty with previous CT scans.

If contrast or sedation is used, you may also be asked not to eat or drink anything for 4-6 hours before the test.

Since x-rays have difficulty passing through metal, you will be asked to remove jewelry and wear a hospital gown during the study.

What happens when the test is performed?
The test is done in the radiology department of a hospital or in a diagnostic clinic. You wear a hospital gown and lie on your back on a table that can slide back and forth through the donut-shaped CT machine. A technician or other health care professional inserts an IV and injects more contrast dye through it. This dye outlines blood vessels and soft tissue to help them show up clearly on the pictures.

The technologist moves the table with a remote control to enable the CT machine to scan your body from all of the desired angles. You will be asked to hold your breath for a few seconds each time a new level is scanned. The technologist usually works the controls from an adjoining room, watching through a window and sometimes speaking to you through a microphone. A CT scan takes about 30–45 minutes. Although it’s not painful, you might find it uncomfortable if you don’t like to lie still for extended periods.

How the Test Will Feel
The x-rays are painless. Some people may have discomfort from lying on the hard table.

Contrast give through an IV may cause a slight burning sensation, a metallic taste in the mouth, and a warm flushing of the body. These sensations are normal and usually go away within a few seconds.

Risk Factors:-
There are a few small risks. The contrast dye used in the test can damage your kidneys, especially if they are already impaired by disease.However, some newer dyes are less likely to cause kidney injuries. If kidney damage does occur, this is usually temporary, although in some rare cases it becomes permanent. If you are allergic to the dye used in the procedure, you may get a rash or your blood pressure may drop enough to make you feel faint until you get treatment. As with x-rays, there is a small exposure to radiation. The amount of radiation from a CT scan is greater than that from regular x-rays, but it’s still too small to be likely to cause harm unless you’re pregnant.

An abdominal CT scan is usually not recommended for pregnant women, because it may harm the unborn child. Women who are or may be pregnant should speak with their health care provider to determine if ultrasound can be used instead.

CT scans and other x-rays are strictly monitored and controlled to make sure they use the least amount of radiation. CT scans do create low levels of ionizing radiation, which has the potential to cause cancer and other defects. However, the risk associated with any individual scan is small. The risk increases as numerous additional studies are performed.

In some cases, a CT scan may still be done if the benefits greatly out weigh the risks. For example, it can be more risky not to have the exam, especially if your health care provider thinks you might have cancer.

The most common dye used is iodine based. A person who is allergic to iodine may have nausea, sneezing, vomiting, itching, or hives. Rarely, the dye may cause anaphylaxis (a life-threatening allergic response).

Results:-
What Abnormal Results Mean

The CT scan may show the following:

*Abdominal aortic aneurysm
*Abscesses
*Acute bilateral obstructive uropathy
*Acute cholecystitis
*Acute unilateral obstructive uropathy
*Addison’s disease
*Amebic liver abscess
*Appendicitis
*Bilateral hydronephrosis
*Bowel wall thickening
*Carcinoma of the renal pelvis or ureter
*Cholangiocarcinoma
*Choledocholithiasis
*Cholelithiasis
*Chronic bilateral obstructive uropathy
*Chronic cholecystitis
*Chronic pancreatitis
*Chronic unilateral obstructive uropathy
*Complicated UTI (pyelonephritis)
*Cystinuria
*Cysts
*Echinococcus
*Enlarged lymph nodes
*Enlarged organs
*Gastrointestinal or bowel obstruction
*Glucagonoma
*Hairy cell leukemia
*Hepatocellular carcinoma
*Histoplasmosis; disseminated
*Hodgkin’s lymphoma
*Islet of Langerhans’ tumor
*Multiple endocrine neoplasia (MEN) II
*Nephrocalcinosis
*Nephrolithiasis
*Non-Hodgkin’s lymphoma
*Ovarian cancer
*Pancreatic abscess
*Pancreatic carcinoma
*Pancreatic pseudocyst
*Pancreatitis
*Pheochromocytoma
*Primary hyperaldosteronism
*Pyelonephritis – acute
*Pyogenic liver abscess
*Renal cell carcinoma
*Retroperitoneal fibrosis
*Sclerosing cholangitis
*Stones (bladder, kidney, liver, gall bladder)
*Testicular cancer
*Tumors
*Unilateral hydronephrosis
*Ureterocele
*Wilms’ tumor
*Wilson’s disease
*Zollinger-Ellison syndrome

Additional conditions under which the test may be performed include the following:-
*Acute renal failure
*Alcoholic liver disease (hepatitis/cirrhosis)
*Atheroembolic renal disease
*Chronic glomerulonephritis
*Chronic renal failure
*Cushing syndrome
*Cushing syndrome caused by adrenal tumor
*Injury of the kidney and ureter
*Medullary cystic kidney disease
*Multiple endocrine neoplasia (MEN) I
*Polycystic kidney disease
*Reflux nephropathy
*Renal artery stenosis
*Renal vein thrombosis
*Skin lesion of histoplasmosis

How long is it before the result of the test is known?
The radiologist can probably give you preliminary results within a day. The formal reading of your CT scan might take another day.

Resources:
https://www.health.harvard.edu/fhg/diagnostics/abdominal-ct-scan.shtml
http://www.nlm.nih.gov/medlineplus/ency/article/003789.htm

How Much Exercise Do Children Need?

CLICK  & SEE

YOU’RE a parent and you want to do your best to be sure your children are healthy. So you worry about physical activity. How much exercise is enough? Will being active protect them against diabetes, cancer or heart disease later in life? Will it prevent them from getting fat?

You search for information, for official guidelines on physical activity. And, you soon discover, there is plenty of advice — at least 27 sets of official guidelines, notes Harold W. Kohl, an epidemiologist at the University of Texas School of Public Health in Austin who formerly worked at the Centers for Disease Control and Prevention.

But the problem in making recommendations is a lack of good data.

We can’t “clarify the dose of physical activity and exercise that’s good for kids” as precisely as we think we can, Dr. Kohl said.

It’s not that experts haven’t tried.

For example, a few years ago the C.D.C. convened a panel of experts to review published papers and make the best recommendations. The panel’s co-chairman, Robert M. Malina, a professor emeritus of kinesiology and health education at the University of Texas at Austin, noted that the group reviewed 850 published papers on the benefits of regular exercise for school-age children and adolescents.

In 2004, the panel concluded by recommending that children and adolescents get 60 minutes of moderate to vigorous physical activity every day. Why 60 minutes and not 30 or 45? It was, Dr. Malina said, “a gut reaction” to the body of evidence.

Now, the Department of Health and Human Services is preparing a new set of guidelines, but most of the same questions remain, Dr. Kohl said. And even though he, Dr. Malina and most other exercise researchers enthusiastically endorse physical activity for everyone, they caution that some of its reputed benefits may be oversold.

In reviewing published papers, the C.D.C. and Human Services panels asked: How good are the data? They learned that, with a few exceptions, for every purported benefit, the evidence was often marginal or equivocal. And, Dr. Malina said, even in situations in which exercise has demonstrable effects, there are marked differences among individuals: some children will get more benefit than others and some will not get any at all.

The undisputed benefits of exercise, the panels said, are that it can lead to stronger muscles, greater endurance, and bones that are denser and have greater mineral content. In addition, when obese children exercise regularly, their body fat, blood lipids and blood pressure may fall. Exercise, though, has not been found to have those effects on healthy children of normal weight.

Even there, though, uncertainties remain, Dr. Kohl said. “Kids aren’t little adults, and they don’t do things for 30 minutes straight through,” he said. “You can put kids on treadmills and train them and that can somewhat help obese kids reduce their adiposity levels, but when you get out in the real world it’s not that easy.”

The panels asked whether exercise alleviates symptoms of anxiety or depression or whether it improves self-image. The studies were not large enough to draw conclusions, they said.

Another issue is academics. Do physically active and physically fit children do better in school? Do they have qualities, like an improved ability to pay attention, that might predict better academic performance?

The answer, Dr. Kohl said, is not known. “The only good data we have indicate that participation in a better physical education program does not negatively affect test scores,” he adds.

Parents sometimes are advised to get children involved in activities that they can do throughout a lifetime — walking, cycling or swimming. But, Dr. Malina said, there is no good evidence that the sport someone does as a child will affect activity as an adult.

“The evidence that tracks youngsters to adulthood is very relatively meager,” Dr. Malina said. And, he added, it is not clear how and why people change activities during their lives.

“I played all sorts of sports growing up,” he said. By the time he started college, he adds, “baseball was my sport.” Now, said Dr. Malina, who is 71, “in my old age, my activity is walking.”

Still, exercise researchers do have some advice for parents: Let the children decide what physical activity they want to do.

“The single best activity you can do is the one you will do,” said Charles B. Corbin, a professor emeritus in the department of exercise and wellness at Arizona State University and the author of more than 80 books on fitness.

And the mistake parents often make, Dr. Malina said, is to decide in advance which sports their children should pursue.

“All too often, youngsters do not have a choice in the decision-making process,” he explained. And, he said, no matter how much parents may want their children to be physically active, “if it is not fun, the child will not do it.”

Sources: The New York Times

Reblog this post [with Zemanta]

Irregular Sleep Makes You Obese

People who sleep fewer than six hours a night – or more than nine – are more likely to be obese, according to a new government study that is one of the largest to show a link between irregular sleep and big bellies.

CLCK & SEE

The study also linked light sleepers to higher smoking rates, less physical activity and more alcohol use.

The research adds weight to a stream of studies that have found obesity and other health problems in those who don’t get proper shuteye, said Dr Ron Kramer, a Colorado physician and a spokesman for the American Academy of Sleep Medicine.

“The data is all coming together that short sleepers and long sleepers don’t do so well,” Kramer said.

The study released Wednesday is based on door-to-door surveys of 87,000 US adults from 2004 through 2006 conducted by the National Centre for Health Statistics, part of the Centres for Disease Control and Prevention.

Such surveys can’t prove cause-effect relationships, so – for example – it’s not clear if smoking causes sleeplessness or if sleeplessness prompts smoking, said Charlotte Schoenborn, the study’s lead author.

It also did not account for the influence of other factors, such as depression, which can contribute to heavy eating, smoking, sleeplessness and other problems.

Smoking was highest for people who got under six hours of sleep, with 31 per cent saying they were current smokers. Those who got nine or more hours also were big puffers, with 26 per cent smoking.

The overall US smoking rate is about 21 per cent. For those in the study who sleep seven to eight hours, the rate was lower, at 18 per cent.

Results were similar, though a bit less dramatic, for obesity: About 33 per cent of those who slept less than six hours were obese, and 26 per cent for those who got nine or more. Normal sleepers were the thinnest group, with obesity at 22 per cent.

For alcohol use, those who slept the least were the biggest drinkers. However, alcohol use for those who slept seven to eight hours and those who slept nine hours or more was similar.

In another measure, nearly half of those who slept nine hours or more each night were physically inactive in their leisure time, which was worse even than the lightest sleepers and the proper sleepers. Many of those who sleep nine hours or more may have serious health problems that make exercise difficult.

Many elderly people are in the group who get the least sleep, which would help explain why physical activity rates are low. Those skimpy sleepers who are younger may still feel too tired to exercise, experts said.

Stress or psychological problems may explain what’s going on with some of the lighter sleepers, experts said.

Other studies have found inadequate sleep is tied to appetite-influencing hormone imbalances and a higher incidence of diabetes and high blood pressure, noted James Gangwisch, a respected Columbia University sleep researcher.

“We’re getting to the point that they may start recommending getting enough sleep as a standard approach to weight loss and the prevention of obesity,” said Gangwisch, who was not involved in the study.

You may click to see also:->Less Sleep = Fatter

Men Skipping Sleep Turn Obese

Sources: The Times Of India