Categories
Featured Health & Fitness

Non-Essential Amino Acid Glycine Can Improve ATP Production

[amazon_link asins=’B00BP2UOOE,B000VYRROC,B01AGGYQ7U,B00KAJB8BQ,B06XF7K9MM,B00153K2EK,B00KAJ28Z6,B01ERZC65A,B00L1KFQKC’ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’919abf81-08e9-11e8-bf62-81d4884bfc4e’]

The non-essential amino acid glycine is needed to generate muscle tissue and also for the conversion of blood glucose into energy. It is referred to as being ‘non-essential’ because the body can manufacture its own glycine, and is therefore not an essential component of your diet. Other uses to which glycine is put by the body includes the maintenance of a healthy nervous system, and is necessary for the proper functioning of the digestive system.

CLICK & SEE

Amino acids play three essential roles in the human body:

1. They are the building blocks of proteins: proteins comprise about half of the dry weight of the majority of your body cells, and without them there would be no life. They are produced using monomers known as amino acids, and there are about 20 different amino acids used to make the vast variety of proteins that make up the human body. Proteins are needed to form enzymes, the catalysts that permit the majority of chemical reactions within our bodies, and also genes, the building blocks of DNA.

2. More relevant here, amino acids play an important role in the production of ATP (adenosine triphosphate) from ADP (adenosine diphosphate) by phosphorylation with creatine phosphate. The more creatine phosphate available, the more ATP can be produced. Since ATP is the molecule responsible for the generation of energy, then the more ATP available the more energy is generated. Although creatine is available from many food sources, it is destroyed by cooking, and over half of what you use is made from the three amino acids, glycine, arginine and methionine. The energy produced in this way is very short-lived, and last only a few seconds – more on that later.

3. Glycine is heavily involved in the production of collagen, which is the substance that maintains the flexibility of your skin and other connective tissues while still maintaining their strength and firmness. Without glycine your skin would become slack due to the degrading effect of sunlight, free radicals and oxidation.

The non essential amino acid, glycine, is believed to offer other benefits to the human body, but it is the second of those above, the production of ATP, which interests us here. ATP is an extremely important nanomolecule, second in importance to the body only to DNA, and possibly also RNA since the two are linked. RNA makes copies of your DNA structure for use in cell division and growth.

When a cell expends energy for whatever reason, such as when I am typing this, or when your heart beats, or even when your liver synthesizes a protein, one of the phosphate groups is removed from the adenosine triphosphate molecule, and converts it to adenosine diphosphate (ADP). The ATP is then said to be ‘spent’, just as your energy is spent when you are tired and can exercise no more.

The ADP is then immediately reconverted to ATP in the mitochondria, a part of every cell in your body. A cell can contain hundreds, or even thousands, of mitochondria, the number depending upon that particular cell’s need for energy. Hence, cells in your muscles, or in your liver where most of the body’s chemistry takes place, contain thousands of mitochondria whereas those in your scalp contain a lot less. Once changed to ATP, a phosphate is again lost when energy is expended, and so the cycle continues.

Glucose is needed allow the ADP to be converted to ATP, hence the need for sugars, or the carbohydrates from which they are manufactured in your body. Each cell can contain up to a billion molecules of ATP, although the couch potatoes among you probably have a lot less! Your store of ATP molecules last about 2 to 5 seconds before being changed to ADP although more rapidly for athletes that expend a lot of energy. Then the energy stored in the form of glycogen in the liver kicks in for another 4 – 6 seconds.

Additionally, you cannot expend more energy that the (eventual) sugars that you take in your diet, which can be in the form of ordinary ‘sugar’ (sucrose), fruit (fructose), glucose, carbohydrates that are metabolized into sugars, or any other member of the sugar family (e.g. lactose, maltose, etc.).

Glycine is one of what are called glucogenic amino acids, which refers to their ability to provide glucose to the blood. Because it helps to maintain proper blood glucose levels, it is often prescribed for conditions that are caused by low glucose levels, such as hypoglycemia that shows symptoms of fatigue and tiredness, and also anemia and what is known as CFS (chronic fatigue syndrome).

The one activity of the human body, in fact that of any mammal, for which ATP is essential, is the heartbeat. Without that no mammal could survive, or any other creature that relies on a circulation system for life. The only reason you heart has to beat is to pump your blood around your body, and it is your blood that contains the oxygen and nutrients needed to sustain life. Your cardiovascular health relies on lots of ATP being available to power each and every heartbeat.

Analysis of the heart during the final stages of heart failure has revealed that there is a general decrease in the myocardial arginine: glycine amidinotraferase (AGAT) gene expression, which is indicative of the necessity of this enzyme for proper heart function. The enzyme is responsible for the first stage in the biosynthesis of creatine from glycine.

Creatine is well known to athletes, and while it is available naturally from some food sources, it can be destroyed during cooking, and at least 50% of the creatine needed by the body is produced in the liver, pancreas and kidneys. It is creatine phosphate that is broken down into creatine and phosphate, the latter of which is used by the mitochondria to regenerate ATP from ADP.

The study carried out on the reduced AGAT levels found in heart failure patients indicates the importance of glycine to heart health. Without a good supply of glycine, there will insufficient creatine produced biochemically to generate the phosphate needed to for the ATP to produce the energy required to keep the heart pumping with the required strength. The energy provided by the mitochondria is used locally by the cells in which it is produced, and within a few seconds of that production. As explained earlier, ATP stores are used up within 2 – 5 seconds, and glycogen stores within another 4 – 6 seconds.

That is why sprinters cannot keep running at maximum speed for more than around 10 seconds or so, because the immediate availability of glycine, and hence creatine, are insufficient to last longer than that. That is one reason why they have to finish those 100 meters as fast as possible, because otherwise they would run out of energy. Other than trying to win, of course!

However, when it comes to the heart, ATP stores are essential, and the cells in your heart require a constant supply of ATP from creatine, which itself depends upon your intake or biosynthesis of glycine. Since dietary sources are insufficient to meet all your needs, and destroyed by cooking, a glycine supplement is the only way to ensure a sufficient intake. You cannot undernourish your heart and remain healthy.

ATP biosynthesis is essential if that of glycine theoretically is not, but the fact that 50% of your glycine requirement has to be produced by your body and the other 50% is sensitive to heat during cooking, a supplement of glycine could be essential to many people.

Sources:http://www.articlesbase.com/health-articles/
nonessential-amino-acid-glycine-can-improve-atp-production-615225.html

Reblog this post [with Zemanta]
Categories
Suppliments our body needs

Creatine

 

Other Names: creatine monohydrate, creatine phosphate, creatine citrate

Definition:Creatine is nitrogenous organic acid that occurs naturally in vertebrates and helps to supply energy to muscle and nerve cells. Creatine was identified in 1832 when Michel Eugène Chevreul discovered it as a component of skeletal muscle, which he later named creatine after the Greek word for flesh, Kreas.

It is a compound that’s involved in the production of energy in the body, in the form of adenosine triphosphate (ATP). Made in the liver, approximately 95% of the body’s creatine ends up being stored in skeletal muscles and the remaining 5% is found in the brain, heart and testes. Once it’s used, creatine is converted to a waste product called creatinine and excreted in urine.

Functions:

Creatine, by way of conversion to and from phosphocreatine, functions in all vertebrates and some invertebrates, in conjunction with the enzyme creatine kinase. A similar system based on arginine/phosphoarginine operates in many invertebrates via the action of Arginine Kinase. The presence of this energy buffer system keeps the ATP/ADP ratio high at subcellular places where ATP is needed, which ensures that the free energy of ATP remains high and minimizes the loss of adenosine nucleotides, which would cause cellular dysfunction. Such high-energy phosphate buffers in the form of phosphocreatine or phosphoarginine are known as phosphagens. In addition, due to the presence of subcompartmentalized Creatine Kinase Isoforms at specific sites of the cell, the phosphocreatine/creatine kinase system also acts as an intracellular energy transport system from those places where ATP is generated (mitochondria and glycolysis) to those places where energy is needed and used, e.g., at the myofibrils for muscle contraction, at the sarcoplasmic reticulum (SR) for calcium pumping, and at the sites of many more biological processes that depend on ATP.

Biosynthesis:
In humans, about half of the daily creatine is biosynthesized from three different amino acids – arginine, glycine, and methionine. The rest is taken in by alimentary sources. Ninety-five percent of creatine is later stored in the skeletal muscles.

……………...

The enzyme GATM (L-arginine:glycine amidinotransferase (AGAT), EC 2.1.4.1) is a mitochondrial enzyme responsible for catalyzing the first rate-limiting step of creatine biosynthesis, and is primarily expressed in the kidneys and pancreas.

The second enzyme in the pathway (GAMT, guanidinoacetate N-methyltransferase, EC:2.1.1.2) is primarily expressed in the liver and pancreas.

Genetic deficiencies in the creatine biosynthetic pathway lead to various severe neurological defects.

Controversy:While creatine’s effectiveness in the treatment of many muscular, neuromuscular, and neuro-degenerative diseases is documented, its utility as a performance-enhancing food supplement in sports has been questioned (see creatine supplements for more information). Some have even proposed that its use as a performance enhancer should be banned. Despite this, creatine remains very popular.

Sources:
In humans, approximately half of stored creatine originates from food (mainly from fresh meat). Since vegetables do not contain creatine, vegetarians show lower levels of muscle creatine which, upon creatine supplementation, rise to a level higher than in meat-eaters.

Creatine is found in small amounts in red meat and fish. However, much of it is destroyed by cooking. It’s also made naturally in the body from L-arginine, L-glycine and L-methionine, amino acids that are principally found in animal protein. Insulin is needed for creatine to enter muscles, so consuming carbohydrates with creatine may increase the amount of creatine available to muscles.

……………..

Creatine supplements are available in capsules or as a powder at health food stores, some drug stores and online. One of the most popular forms of creatine is creatine monohydrate.

Side effects:-

In the Cochrane Collaboration analysis of 12 trials, there were no notable adverse events reported, however, research on the side effects and safety of creatine supplements is still limited.

Possible side effects of creatine include:

*Stomach cramps

*Nausea
*Diarrhea

*Loss of appetite

*Muscle cramps

*Weight gain

Creatine may cause water to be drawn away from other areas of the body and into muscle tissue, which could increase the risk of dehydration.

High doses of creatine could potentially injure the kidneys, liver and heart. Theoretically, creatine may cause kidney damage because its by-product, creatinine, is filtered through the kidneys into urine. Although studies haven’t found adverse events in recommended doses, there have been a couple of case reports of people who have experienced kidney collapse and three deaths in people taking creatine, but there is no definitive evidence that creatine was the cause. People with kidney disease or liver disease should avoid creatine.

Creatine supplements may cause asthmatic symptoms, such as wheezing and coughing, in some people.

People with McArdle’s disease shouldn’t use high doses of creatine because it has been found to increase muscle pain.

There is some concern that oral creatine supplements are metabolized in the body to a toxic waste product formaldehyde, which could potentially damage cells, DNA molecules and blood vessels.

Pregnant or nursing women or children should not use creatine supplements.

One of the main safety concerns is that individuals using creatine to enhance athletic performance or muscle mass, particularly adolescents, may exceed recommended dosages and take it without supervision.

Short-term use of creatine in healthy individuals is generally considered safe (see Creatine supplements#Safety). , studies have not yet been able to demonstrate either long-term or short term creatine supplementation result in adverse health effects. Creatine supplementation utilizing proper cycling and dosages has not been linked with any adverse side effects beyond occasional dehydration due to increased muscular water uptake from the rest of the body.[13] In fact, an increase in body mass because of increased muscle hydration is the most widely accepted side effect of creatine supplementation[14][15].

According to the opinion statement of the European Food Safety Authorities (EFSA) published in 2004 it was concluded that “The safety and bioavailability of the requested source of creatine, creatine monohydrate in foods for particular nutritional uses, is not a matter of concern provided that there is adequate control of the purity of this source of creatine (minimum 99.95%) with respect to dicyandiamide and dihydro-1,3,5-triazine derivatives, as well as heavy metal contamination. The EFSA Panel endorses the previous opinion of the SCF that high loading doses (20 gram / day) of creatine should be avoided. Provided high purity creatine monohydrate is used in foods for particular nutritional uses, the Panel considers that the consumption of doses of up to 3g/day of supplemental creatine, similar to the daily turnover rate of creatine, is unlikely to pose any risk”.

This opinion is corroborated by the fact that creatine is a natural component in mothers’ milk and that creatine is absolutely necessary for brain development in the human embryo and the baby, as well as for optimal physiological functioning of the adult human body, especially the brain, nervous system, the muscles and other organs and cells of high energy expenditure, where the creatine kinase (CK) system is highly expressed and creatine levels are high.

Side effects that produce lower leg pain may be associated with the use of creatine. Creatine may be the cause of an increase in the anterior pressures of the lower leg. This is usually found in post-creatine use when at rest and after exercise. Normal at-rest pressures have been found to be highly elevated by subjects who used creatine within the prior 35 days when compared to no supplementation. This can produce an extreme amount of pain in the lower leg due to the rigidity of the anterior compartment of the lower leg and lack of fluid drainage out of the compartment. It may also be exasperated by the increase of water content in the muscle fibers, putting more pressure on the anterior compartment. If this condition persist, check with your doctor and inform them of your creatine use and dosage. Although this condition may and usually does subside, if left untreated complications may occur that require emergency medical attention. If the levels remain high for a long period of time, irreversible damage to tissue may occur, particularly to the peroneal nerve. These conditions can further be found under Chronic Compartment Syndrome.

Creatine and the treatment of muscular diseases:
Creatine supplementation has been, and continues to be, investigated as a possible therapeutic approach for the treatment of muscular, neuromuscular, neurological and neurodegenerative diseases (arthritis, congestive heart failure, Parkinson’s disease, disuse atrophy, gyrate atrophy, McArdle’s disease, Huntington’s disease, miscellaneous neuromuscular diseases, mitochondrial diseases, muscular dystrophy, neuroprotection, etc.).

Two studies have indicated that creatine may be beneficial for neuromuscular disorders. First, a study demonstrated that creatine is twice as effective as the prescription drug riluzole in extending the lives of mice with the degenerative neural disease amyotrophic lateral sclerosis (ALS, or Lou Gehrig’s disease). The neuroprotective effects of creatine in the mouse model of ALS may be due either to an increased availability of energy to injured nerve cells or to a blocking of the chemical pathway that leads to cell death.

Second, creatine has been demonstrated to cause modest increases in strength in people with a variety of neuromuscular disorders.

Third, creatine has been shown to be beneficial as an adjuvant treatment for several neuro-muscular and neuro-degenerative diseases and its potential is just beginning to be explored in several multi-center clinical studies in the USA and elsewhere.

Resources:
http://en.wikipedia.org/wiki/Creatine
http://altmedicine.about.com/od/creatine/a/creatine.htm

Reblog this post [with Zemanta]
css.php