Categories
Featured News on Health & Science

The Unfolding Mystery of Scleroderma

[amazon_link asins=’1590770234,B013BAX1W4,1461490278,B00U7TCV7O,B01G49GPCC,B0194AORKA,1569244391,1591099803,B001FB6E6W’ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’1a25d7b4-1766-11e7-b3e0-f96d57182cc3′]

Scleroderma, an autoimmune disease, tends to afflict middle-age women and can affect many parts of the body, inside and out.

CLICK & SEE

Lung disease, the biggest killer of scleroderma patients, is the main focus of research today..

Doctors have a growing arsenal of proven and potential treatments, some of which are risky and the subjects of current research, including stem cell transplants and powerful but toxic cancer drugs.

Like many autoimmune ailments, scleroderma remains a great unknown. Despite decades of research, the cause of this rare and complicated disease has yet to be discovered. But the good news is that doctors have a pretty clear understanding of how scleroderma progresses — a natural history, they call it — and are better than ever at extending and easing their patients’ lives.

“Lots of patients and lots of doctors used to consider it a ‘black box’ disease, a complete mystery, with little that could be done,” said Dr. Philip J. Clements of the University of California, Los Angeles, who is a scleroderma specialist. “Now there’s a body of evidence that tells us what to watch out for, and when.”

Experts now know, for example, that the gradual hardening of tissues and blood vessels that is a hallmark of scleroderma usually starts on the hands and face, with skin thickening, pitted scars and cool, pale fingertips among the earliest symptoms. Damage can then progress inward to internal organs, though the course varies widely from patient to patient. Of the 10,000 cases diagnosed among Americans each year, mainly women, a small subset will die quickly. But many others are able to manage their condition with a variety of treatments and have normal life expectancies.

Doctors also now know that if a patient’s internal organs are going to be affected as well as the skin, that is likely to happen in the first four or five years of the disease. So early diagnosis and close monitoring of the heart, lungs and kidneys are vitally important.

They have also learned that steroids, once viewed as a cure-all for immune disorders, can worsen the effects of scleroderma, especially in the kidneys, and should be used with caution.

“Learning which drugs to avoid was itself a big step,” said Dr. John Varga, the Gallagher Professor of Medicine at Northwestern University and chairman of the Medical Advisory Board for the Scleroderma Foundation, a nonprofit group that sponsors research and support for patients and families.

Kidney disease used to cause 90 percent of scleroderma-related deaths until the advent of a class of blood pressure drugs called angiotensin-converting enzyme, or ACE, inhibitors in the 1980s. ACE inhibitors prevent kidney damage by slowing down the chemicals that cause the muscles surrounding blood vessels to contract. Complications in the kidneys now account for only 14 percent of scleroderma deaths, Dr. Steen said.

The lungs are still a challenge. About 80 percent of scleroderma patients develop some form of lung problem — either pulmonary hypertension, due to hardening of the veins and arteries in the lung, or pulmonary fibrosis, in which the lung tissue becomes inflamed and then thickened with scarring. Some patients develop both. Either way, breathing becomes more difficult as the lungs become less pliable.

“If you die of a scleroderma-related problem, half of those deaths are from lung disease,” said Dr. Virginia Steen, a professor at Georgetown University and director of the Rheumatology Fellowship Program there. She wrote a seminal 2007 article that documented the shift from kidney disease to pulmonary disease as the biggest cause of death among scleroderma patients.

One successful remedy called Revatio, routinely prescribed since 2005, came from an unexpected source: Viagra. Repackaged from a little blue diamond to a round white tablet and renamed for marketing, dosage and insurance purposes, the drug works by relaxing the blood vessels and improving blood flow, whether for erectile or lung dysfunction.

“No one could understand why all these women were taking it four times a day,” said Frannie Waldron, chief executive of the Scleroderma Foundation.

Doctors also have a growing arsenal of experimental treatments and potential cures, some of which are risky.

Among them is cyclophosphamide, or Cytoxan, a powerful but highly toxic cancer drug that acts on the immune system. The drug decreases the inflammation that causes pulmonary fibrosis and has been used on scleroderma patients for the last 10 years.

But cytoxan has dangerous side effects, including an increased risk of bladder cancer, and usually is not given for more than a year. Moreover, the fibrosis seems to start again once drug treatments stop. Several studies involving the medication are under way, as well as efforts to find alternative treatments, many of them sponsored by drug companies.

Another big push involves stem cell transplant, an extremely risky process in which doctors try to reset the patient’s immune system and bypass the glitch that causes scleroderma. The procedure is the subject of a National Institutes of Health study called the SCOT trial, for Scleroderma: Cyclophosphamides or Transplantation?

Similar to a bone marrow transplant, doctors first draw the patient’s blood and extract the stem cells, the highly malleable building blocks that are thought to be free of the seeds of scleroderma. The patient is then subjected to high doses of radiation or chemotherapy with Cytoxan to kill the bone marrow. The last step is to reinfuse the stem cells, in the hopes that they replicate themselves in a healthy form free of disease.

The study will compare the benefits of the stem cell transplant with giving patients just monthly doses, but high ones, of Cytoxan. Preliminary results have been promising, several experts said.

“You’d think you’d have trouble recruiting for this,” said Dr. Arthur C. Theodore of Boston University, one of the investigators in the project. “But scleroderma patients are desperate.”

Sources
: The New York Times

Reblog this post [with Zemanta]
Categories
Ailmemts & Remedies

Multiple Sclerosis (MS)

Definition:-
Multiple sclerosis(MS) is an autoimmune disease that affects the central nervous system (the brain and spinal cord).Multiple sclerosis (abbreviated MS, formerly known as disseminated sclerosis or encephalomyelitis disseminata) is a chronic, inflammatory, demyelinating disease that affects the central nervous system (CNS)]. Disease onset usually occurs in young adults, is more common in women, and has a prevalence that ranges between 2 and 150 per 100,000 depending on the country or specific population.MS was first described in 1868 by Jean-Martin Charcot……..CLICK & SEE

It damages the myelin sheath, the material that surrounds and protects your nerve cells. This damage slows down or blocks messages between your brain and your body, leading to the different symptoms.

Multiple sclerosis...MRI of the brain..Nerve supply to the pelvis..Central nervous system
Myelin and nerve structure

Causes:-
No one knows what causes MS. It may be an autoimmune disease, which happens when your body attacks itself. Multiple sclerosis affects woman more than men. Usually, the disease is mild, but some people lose the ability to write, speak or walk. There is no cure for MS, but medicines may slow it down and help control symptoms. Physical and occupational therapy may also help.

The disorder most commonly begins between ages 20 and 40, but can be seen at any age.

Though the exact cause is not known, but MS is believed to result from damage to the myelin sheath, the protective material which surrounds nerve cells. It is a progressive disease, meaning the nerve damage (neurodegeneration) gets worse over time.

In addition to nerve damage, another part of MS is inflammation. Inflammation occurs when the body’s own immune cells attack the nervous system. The inflammation destroys the myelin, leaving multiple areas of scar tissue (sclerosis). It also causes nerve impulses to slow down or become blocked, leading to the symptoms of MS. Repeated episodes, or flare ups, of inflammation can occur along any area of the brain and spinal cord.

Symptoms vary because the location and extent of each attack varies. Usually episodes that last days, weeks, or months alternate with times of reduced or no symptoms (remission).

Recurrence (relapse) is common although non-stop progression without periods of remission may also occur.

Researchers are not sure what triggers an attack. Patients with MS typically have a higher number of immune cells than a healthy person, which suggests that an immune response might play a role. The most common theories point to a virus or genetic defect, or a combination of both. There also appears to be a genetic link to the disease.

MS is more likely to occur in northern Europe, the northern United States, southern Australia, and New Zealand than in other areas. Geographic studies indicate there may be an environmental factor involved.

People with a family history of MS and those who live in a geographical area with a higher incidence rate for MS have a higher risk of the disease.

Symptoms:-
*Decreased ability to control small movements
*Decreased attention span
*Decreased coordination
*Decreased judgment
*Decreased memory
*Depression
*Difficulty speaking or understanding speech
*Dizziness
*Double vision
*Eye discomfort
*Facial pain
*Fatigue
*Loss of balance
*Movement problems – slowly progressive; beginning in the legs
*Muscle atrophy
*Muscle spasms (especially in the legs)
*Muscle spasticity (uncontrollable spasm of muscle groups)
*Numbness or abnormal sensation in any area
*Pain in the arms or legs
*Paralysis in one or more arms or legs
*Slurred speech
*Tingling
*Tremor in one or more arms or legs
*Uncontrollable rapid eye movements
*Urinary frequency (frequent need to urinate)
*Urinary hesitancy (difficult to begin urinating)
*Urinary urgency (strong urge to urinate)
*Urine leakage (incontinence)
*Vertigo
*Vision loss — usually affects one eye at a time
*Walking/gait abnormalities
*Weakness in one or more arms or legs

Additional symptoms that may be associated with this disease:

*Constipation
*Hearing loss

Note: Symptoms may vary with each attack. They may last days to months, then reduce or disappear, then recur periodically. With each recurrence, the symptoms are different as new areas are affected. Fever can trigger or worsen attacks, as can hot baths, sun exposure, and stress.

Diagnosis:-
Multiple sclerosis is difficult to diagnose in its early stages. In fact, a definite diagnosis cannot be made until other disease processes (differential diagnoses) have been ruled out and, in the case of relapsing-remitting MS, there is evidence of at least two anatomically separate demyelinating events separated by at least thirty days. In the case of primary progressive, a slow progression of signs and symptoms over at least 6 months is required.

Exams and Tests:-

Symptoms of MS may mimic many other neurologic disorders. Diagnosis is made by ruling out other conditions.

A history of at least two attacks separated by a period of reduced or no symptoms may be a sign of relapsing-remitting MS.

If the health care provider can see decreases in any functions of the central nervous system (such as abnormal reflexes), a diagnosis of MS may be suspected.

A neurological exam may show localized decreases in nerve function. This may include decreased or abnormal sensation, decreased ability to move a part of the body, speech or vision changes, or other loss of neurologic functions. The type of neurologic deficit usually indicates the location of the damage to the nerves.

There may be a positive Babinski’s reflex.

Eye examination may show abnormal pupil responses, changes in the visual fields or eye movements, rapid eye movements triggered by movement of the eye, decreased visual acuity, or problems with the internal structures of the eye.

Tests that indicate or confirm multiple sclerosis include:-

*Head MRI scan
*Spine MRI
*Lumbar puncture (spinal tap)
*Cerebrospinal fluid tests, includingCSF oligoclonal banding

Treatment:-

There is no known cure for multiple sclerosis at this time. However, there are promising therapies that may slow the disease. The goal of treatment is to control symptoms and maintain a normal quality of life.

Medications used may include:

*Immune modulators to help control the immune system, including interferons (Avonex, Betaseron, or Rebif), monoclonal

*antibodies (Tysabri), and glatiramer acetate (Copaxone)

*Steroids to decrease the severity of attacks when they occur

*Medicines to reduce muscle spasms such as Lioresal (Baclofen), tizanidine (Zanaflex), or a benzodiazepine

*Cholinergic medications to reduce urinary problems

*Antidepressants for mood or behavior symptoms

*Amantadine for fatigue

Physical therapy, speech therapy, occupational therapy, and support groups can help improve the person’s outlook, reduce depression, maximize function, and improve coping skills.

A planned exercise program early in the course of the disorder can help maintain muscle tone.

A healthy lifestyle is encouraged, including good general nutrition. Adequate rest and relaxation can help maintain energy levels. Attempts should be made to avoid fatigue, stress, temperature extremes, and illness to reduce factors that may trigger an MS attack.

More Support Groups:
For additional information, Click to see multiple sclerosis resources.

Prognosis:-

The outcome is variable and unpredictable. Although the disorder is chronic and incurable, life expectancy can be normal or nearly so. Most people with MS continue to walk and function at work with minimal disability for 20 or more years.

The factors felt to best predict a relatively benign course are female gender, young age at onset (less than 30 years), infrequent attacks, a relapsing-remitting pattern, and low burden of disease on imaging studies.

The amount of disability and discomfort varies with the severity and frequency of attacks and the part of the central nervous system affected by each attack. Commonly, there is initially a return to normal or near-normal function between attacks. As the disorder progresses, there is progressive loss of function with less improvement between attacks.

Possible Complications :

*Progressive disability

*Urinary tract infections

*Side effects of medications used to treat the disorder.

When to Contact a Medical Professional:-

Call your health care provider if you develop any symptoms of MS, as he or she is the only one who can distinguish multiple sclerosis from other serious disorders such as stroke or infection.

Call your health care provider if symptoms progressively worsen despite treatment.

Call your health care provider if the condition deteriorates to the point where home care is no longer possible.

Click to See:

Multiple Sclerosis (MS) and Ayurveda

Understanding the Root Causes of Multiple Sclerosis on Ayurvedic view

Ayurvedic Treatment For Multiple Sclerosis

Homeopathic Treatment, Cure & Medicines for Multiple Sclerosis

Does homeopathy really help cure MS.(Multiple Sclerosis )

Esperanza – Treatment Program for Multiple Sclerosis

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose

Resources:
http://www.nlm.nih.gov/medlineplus/ency/article/000737.htm
National Institute of Neurological Disorders and Stroke
http://en.wikipedia.org/wiki/Multiple_sclerosis

Categories
Ailmemts & Remedies

Thalassemia

[amazon_link asins=’1437725317,B008DUPKQS,B00EDHVFRS,B079QHRGVF,B001GGY436,B01M63C08N,B00GNPBEH4,B0796LBT8V,B078SSBYF9′ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’5b297fa1-1452-11e8-bac0-55bb5d1a6a85′]

Thalassemia (British spelling, “thalassaemia”) is an inherited autosomal recessive blood disease. In thalassemia, the genetic defect results in reduced rate of synthesis of one of the globin chains that make up hemoglobin. Reduced synthesis of one of the globin chains causes the formation of abnormal hemoglobin molecules, and this in turn causes the anemia which is the characteristic presenting symptom of the thalassemias.

Thalassemia is not synonymous with hemoglobinopathies, like sickle-cell disease. Thalassemias result in under production of globin proteins, often through mutations in regulatory genes. Hemoglobinopathies imply structural abnormalities in the globin proteins themselves . The two conditions may overlap, however, since some conditions which cause abnormalities in globin proteins (hemoglobinopathy) also affect their production (thalassemia). Either or both of these conditions may cause anemia.

The disease is particularly prevalent among Mediterranean peoples, and this geographical association was responsible for its naming: Thalassa (θάλασσα) is Greek for the sea, Haema (αίμα) is Greek for blood.

There is no cure for thalassemias, and the best treatment available today consists of frequent blood transfusions (every two to three weeks) with iron chelation therapy (e.g. deferoxamine) administered subcutaneously. Bone marrow transplants (hematopoietic stem cell transplantations) and cord blood transplantation with pre-operative myeloablation are potentially curative, though the latter requires further investigation.

Prevalence
Generally, thalassemias are prevalent in populations that evolved in humid climates where malaria was endemic, but effects all races. Thalassemias are particularly associated with Arab-Americans, people of Mediterranean origin, and Asians. The estimated prevalence is 16% in people from Cyprus, 3-14% in Thailand, and 3-8% in populations from India, Pakistan, Bangladesh, and China. There are also prevalences in descendants of people from Latin America, and Mediterranean countries (e.g. Spain, Portugal, Italy, Greece and others). A very low prevalence has been reported from black people in Africa (0.9%), with those in northern Africa having the highest prevalence and northern Europe (0.1%).

Pathophysiology
The thalassemias are classified according to which chain of the hemoglobin molecule is affected (see hemoglobin for a description of the chains). In α thalassemias, production of the α globin chain is affected, while in β thalassemia production of the β globin chain is affected.

Thalassemia produces a deficiency of α or β globin, unlike sickle-cell disease which produces a specific mutant form of β globin.

β globin chains are encoded by a single gene on chromosome 11; α globin chains are encoded by two closely linked genes on chromosome 16. Thus in a normal person with two copies of each chromosome, there are two loci encoding the β chain, and four loci encoding the α chain.

Deletion of one of the α loci has a high prevalence in people of African-American or Asian descent, making them more likely to develop α thalassemias. β thalassemias are common in African-Americans, but also in Greeks and Italians.

Alpha (α) thalassemias
The α thalassemias involve the genes HBA1 (Mendelian Inheritance in Man (OMIM) 141800) and HBA2 (Mendelian Inheritance in Man (OMIM) 141850), inherited in a Mendelian recessive fashion. It is also connected to the deletion of the 16p chromosome. α thalassemias result in decreased alpha-globin production, therefore fewer alpha-globin chains are produced, resulting in an excess of β chains in adults and excess γ chains in newborns. The excess β chains form unstable tetramers (called Hemoglobin H or HbH) which have abnormal oxygen dissociation curves.

There are four genetic loci for α globin, two of which are maternal in origin and two of which are paternal in origin. The severity of the α thalassemias is correlated with the number of affected α globin loci: the greater the number of affected loci, the more severe will be the manifestations of the disease.

If one of the four α loci is affected, there is minimal effect. Three α-globin loci are enough to permit normal hemoglobin production, and there is no anemia or hypochromia in these people. They have been called silent carriers.
If two of the four α loci are affected, the condition is called alpha thalassemia trait. Two α loci permit nearly normal erythropoiesis, but there is a mild microcytic hypochromic anemia. The disease in this form can be mistaken for iron deficiency anemia and treated inappropriately with iron. Alpha thalassemia trait can exist in two forms: one form, associated with Asians, involves cis deletion of two alpha loci on the same chromosome; the other, associated with African-Americans, involves trans deletion of alpha loci on different (homologous) chromosomes.
If three loci are affected, the condition is called Hemoglobin H disease. Two unstable hemoglobins are present in the blood: Hemoglobin Barts (tetrameric γ chains) and Hemoglobin H (tetrameric β chains). Both of these unstable hemoglobins have a higher affinity for oxygen than normal hemoglobin, resulting in poor oxygen delivery to tissues. There is a microcytic hypochromic anemia with target cells and Heinz bodies (precipitated HbH) on the peripheral blood smear, as well as splenomegaly. The disease may first be noticed in childhood or in early adult life, when the anemia and splenomegaly are noted.
If all four loci are affected, the fetus cannot live once outside the uterus and may not survive gestation: most such infants are dead at birth with hydrops fetalis, and those who are born alive die shortly after birth. They are edematous and have little circulating hemoglobin, and the hemoglobin that is present is all tetrameric γ chains (hemoglobin Barts).

Beta (β) thalassemias
Beta thalassemias are due to mutations in the HBB gene on chromosome 11 (Mendelian Inheritance in Man (OMIM) 141900), also inherited in an autosomal-recessive fashion. The severity of the disease depends on the nature of the mutation. Mutations are characterized as (βo) if they prevent any formation of β chains; they are characterized as (β+) if they allow some β chain formation to occur. In either case there is a relative excess of α chains, but these do not form tetramers: rather, they bind to the red blood cell membranes, producing membrane damage, and at high concentrations they form toxic aggregates.

Any given individual has two β globin alleles.

If only one β globin allele bears a mutation, the disease is called β thalassemia minor (or sometimes called β thalassemia trait). This is a mild microcytic anemia. In most cases β thalassemia minor is asymptomatic, and many affected people are unaware of the disorder. Detection usually involves measuring the mean corpuscular volume (size of red blood cells) and noticing a slightly decreased mean volume than normal.
If both alleles have thalassemia mutations, the disease is called β thalassemia major or Cooley’s anemia. This is a severe microcytic, hypochromic anemia. Untreated, this progresses to death before age twenty. Treatment consists of periodic blood transfusion; splenectomy if splenomegaly is present, and treatment of transfusion-caused iron overload. Cure is possible by bone marrow transplantation.
Thalassemia intermedia is a condition intermediate between the major and minor forms. Affected individuals can often manage a normal life but may need occasional transfusions e.g. at times of illness or pregnancy, depending on the severity of their anemia.
The genetic mutations present in β thalassemias are very diverse, and a number of different mutations can cause reduced or absent β globin synthesis. Two major groups of mutations can be distinguished:

Nondeletion forms: These defects generally involve a single base substitution or small deletion or inserts near or upstream of the β globin gene. Most commonly, mutations occur in the promoter regions preceding the beta-globin genes. Less often, abnormal splice variants are believed to contribute to the disease.
Deletion forms: Deletions of different sizes involving the β globin gene produce different syndromes such as (βo) or hereditary persistence of fetal hemoglobin syndromes.

Delta (δ) thalassemia
As well as alpha and beta chains being present in hemoglobin about 3% of adult hemoglobin is made of alpha and delta chains. Just as with beta thalassemia, mutations can occur which affect the ability of this gene to produce delta chains. A mutation that prevents formation of any delta chains is termed a delta0 mutation, whereas one that decreases but does not eliminate production of delta chain is termed a delta+ mutation. When one inherits two delta0 mutations, no hemoglobin A2 (alpha2,delta2) can be formed. Hematologically, however, this is innocuous because only 2-3% of normal adult hemoglobin is hemoglobin A2. The individual will have normal hematological parameters (erythrocyte count, total hemoglobin, mean corpuscular volume, red cell distribution width). Individuals who inherit only one delta thalassemia mutation gene will have a decreased hemoglobin A2, but also no hematological consequences. The importance of recognizing the existence of delta thalassemia is seen best in cases where it may mask the diagnosis of beta thalassemia trait. In beta thalassemia, there is an increase in hemoglobin A2, typically in the range of 4-6% (normal is 2-3%). However, the co-existence of a delta thalassemia mutation will decrease the value of the hemoglobin A2 into the normal range, thereby obscurring the diagnosis of beta thalassemia trait. This can be important in genetic counseling, because a child who is the product of parents each of whom has beta0 thalassemia trait has a one in four chance of having beta thalassemia major.

In combination with other hemoglobinopathies
Thalassemia can co-exist with other hemoglobinopathies. The most common of these are:

hemoglobin E/thalassemia: common in Cambodia, Thailand, and parts of India; clinically similar to β thalassemia major or thalassemia intermedia.

hemoglobin S/thalassemia, common in African and Mediterranean populations; clinicallysimilar to sickle cell anemia, with the additional feature of splenomegaly

hemoglobin C/thalassemia: common in Mediterranean and African populations,hemoglobin C/βo thalassemia causes a moderately severe hemolytic anemia withsplenomegaly; hemoglobin C/β+ thalassemia produces a milder disease.

Treatment and complications:
Anyone with thalassemia should consult a properly qualified hematologist.

Thalassemias may co-exist with other deficiencies such as folic acid (or folate, a B-complex vitamin) and iron deficiency (only in Thalassemia Minor).

Thalassemia Major and Intermedia
Thalassemia Major patients receive frequent blood transfusions that lead to iron overload. Iron chelation treatment is necessary to prevent iron overload damage to the internal organs in patients with Thalassemia Major. Because of recent advances in iron chelation treatments, patients with Thalassemia Major can live long lives if they have access to proper treatment. Popular chelators include deferoxamine and deferiprone. Of the two, deferoxamine is preferred; it is associated with fewer side-effects.[4]

The most common complaint by patients is that it is difficult to comply with the intravenous chelation treatments because they are painful and inconvenient. The oral chelator deferasirox (marketed as Exjade) was recently approved for use in some countries and may offer some hope with compliance.

Untreated thalassemia Major eventually leads to death usually by heart failure, therefore birth screening is very important.

In recent years, bone marrow transplant has shown promise with some patients of thalassemia major. Successful transplant can eliminate the patients dependencies in transfusions.

All Thalassemia patients are susceptible to health complications that involve the spleen (which is often enlarged and frequently removed) and gall stones. These complications are mostly prevalent to thalassemia Major and Intermedia patients.

Thalassemia Intermedia patients vary a lot in their treatment needs depending on the severity of their anemia.

Thalassemia Minor:
Contrary to popular belief, Thalassemia Minor patients should not avoid iron-rich foods by default. A serum ferritin test can determine what their iron levels are and guide them to further treatment if necessary. Thalassemia Minor, although not life threatening on its own, can affect quality of life due to the effects of a mild to moderate anemia. Studies have shown that Thalassemia Minor often coexists with other diseases such as asthma, and mood disorders.

Thalassemia prevention and management:
α and β thalassemia are often inherited in an autosomal recessive fashion although this is not always the case. Reports of dominantly inherited α and β thalassemias have been reported the first of which was in an Irish family who had a two deletions of 4 and 11 bp in exon 3 interrupted by an insertion of 5 bp in the β-globin gene. For the autosomal recessive forms of the disease both parents must be carriers in order for a child to be affected. If both parents carry a hemoglobinopathy trait, there is a 25% chance with each pregnancy for an affected child. Genetic counseling and genetic testing is recommended for families that carry a thalassemia trait.

………….thalasemia-carrier.png
………………………………….Autosomal recessive inheritance

There are an estimated 60-80 million people in the world who carry the beta thalassemia trait alone. This is a very rough estimate and the actual number of thalassemia Major patients is unknown due to the prevalence of thalassemia in less developed countries in the Middle East and Asia. Countries such as India, Pakistan and Iran are seeing a large increase of thalassemia patients due to lack of genetic counseling and screening. There is growing concern that thalassemia may become a very serious problem in the next 50 years, one that will burden the world’s blood bank supplies and the health system in general. There are an estimated 1,000 people living with Thalassemia Major in the United States and an unknown number of carriers. Because of the prevalence of the disease in countries with little knowledge of thalassemia, access to proper treatment and diagnosis can be difficult.

As with other genetically acquired disorders, aggressive birth screening and genetic counseling is recommended.

A screening policy exists on both sides of the island of Cyprus to reduce the incidence of thalassemia, which since the program’s implementation in the 1970s (which also includes pre-natal screening and abortion) has reduced the number of children born with the hereditary blood disease from 1 out of every 158 births to almost zero.
Thalagenâ„¢: Gene Therapy Treatment for Thalassemia

Treatment of β-Thalassemia with Chinese Herbs

Medicines for Thalassemia,Treatment for Sickle Cell

Anemia Treatment – Herbs and Ayurvedic

Click to learn Homeopath, Dr.P.Banerji’s  view on Thalassemia

Benefits:
Being a carrier of the disease may confer a degree of protection against malaria, and is quite common among people from Italian or Greek origin, and also in some African and Indian regions. This is probably by making the red blood cells more susceptible to the less lethal species Plasmodium vivax, simultaneously making the host RBC environment unsuitable for the merozoites of the lethal strain Plasmodium falciparum. This is believed to be a selective survival advantage for patients with the various thalassemia traits. In that respect it resembles another genetic disorder, sickle-cell disease.

Epidemiological evidence from Kenya suggests another reason: protection against severe anemia may be the advantage.
People diagnosed with heterozygous (carrier) Beta-Thalassemia have some protection against coronary heart disease.

Notable patients:
Pete Sampras
Zinedine Zidane
Amitabh Bachchan
John Maguire

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
http://en.wikipedia.org/wiki/Thalassemia

Reblog this post [with Zemanta]
Categories
News on Health & Science

Leukemia stem cells to map how disease begins

[amazon_link asins=’B01EVN45OS,B009KV1996,B008R53XNG,B00J2FFZAY,B00IU19RVE,B00GM09K1C,B01CGTKZZW,0986340995,B072VP7NGW’ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’17cf4a1e-8888-11e7-a7cd-0771e4f782ee’]

In a major breakthrough that could help devise better treatment for blood cancer and aid the development of drugs that would stop the process before it advances, Canadian scientists have for the first time converted normal human blood cells to leukemia stem cells in the lab.

CLICK & SEE THE PICTURES

The team then transplanted the converted cells into lab mice and watched it replicate the entire disease process, from the very moment it begins. Till now, most human leukemia research involved studying a patient’s diseased cells. But because cancer takes months to develop, “just studying the cells at the end of the process does not tell us the series of changes that caused the cells to become leukemic and when they happened. We have now duplicated the natural process of cell death, as it happens. This will help us understand how cancer begins,” Dr John Dick at Ontario Cancer Institute said.

According to Dick, this peek into leukemia’s development will allow scientists to ask questions that include: Is the childhood disease different from that in adults? In which cell type does leukemia arise? And which genes are involved and in which order do they have to operate?

Reacting to the study, former head of Rajiv Gandhi Cancer Institute Dr Y P Bhatia told TOI, “Once the basic cellular structure is known, better treatment solutions can be devised. This is a major breakthrough. Scientists can now see the first cells that will give birth to leukemia and then watch as the disease as it slowly progresses.”

The groundbreaking research involved infecting cells from umbilical cord blood with a virus engineered to carry one of the genes known to cause certain types of leukemia. Dr Dick’s team introduced a specific leukemia gene into normal stem cells and injected the genetically altered cells into mice that lacked immune systems. This resulted in the mices developing leukemia, displaying the same characteristics and patterns of human disease.

He said, “We are studying how leukemia arises in the first place. We found that with the leukemia gene we were using, the disease only arose from immature stem and progenitor cells. The leukemic stem cells that were created seemed to change as the human leukemia was grown for longer times in a series of transplanted mice.”

Source:The Times Of India

css.php