Categories
Ailmemts & Remedies

Cholangitis

Definition:
Cholangitis is an infection of the common bile duct, the tube that carries bile from the liver to the gallbladder and intestines. Bile is a liquid made by the liver that helps digest food.

CLICK & SEE

Cholangitis can be life-threatening, and is regarded as a medical emergency. Characteristic symptoms include yellow discoloration of the skin or whites of the eyes, fever, abdominal pain, and in severe cases, low blood pressure and confusion. Initial treatment is with intravenous fluids and antibiotics, but there is often an underlying problem (such as gallstones or narrowing in the bile duct) for which further tests and treatments may be necessary, usually in the form of endoscopy to relieve obstruction of the bile duct.
Symptoms:
The following symptoms may occur:

*Pain on the upper right side or upper middle part of the abdomen. It may also be felt in the back or below the right shoulder blade. The pain may come and go and feel sharp, cramp-like, or dull.

*Fever and chills

*Dark urine and clay-colored stools

*Nausea and vomiting

*Yellowing of the skin (jaundice), which may come and go
Physical examination findings typically include jaundice and right upper quadrant tenderness.Charcot’s triad is a set of three common findings in cholangitis: abdominal pain, jaundice, and fever. This was assumed in the past to be present in 50–70% of cases, although more recently the frequency has been reported as 15–20%.Reynolds’ pentad includes the findings of Charcot’s triad with the presence of septic shock and mental confusion. This combination of symptoms indicates worsening of the condition and the development of sepsis, and is seen less commonly still.

In the elderly, the presentation may be atypical; they may directly collapse due to septicemia without first showing typical features. Those with an indwelling stent in the bile duct (see below) may not develop jaundice.

Causes:
Cholangitis is most often caused by a bacterial infection. This can occur when the duct is blocked by something, such as a gallstone or tumor. The infection causing this condition may also spread to the liver.

Bile duct obstruction, which is usually present in acute cholangitis, is generally due to gallstones. 10–30% of cases, however, are due to other causes such as benign stricturing (narrowing of the bile duct without an underlying tumor), postoperative damage or an altered structure of the bile ducts such as narrowing at the site of an anastomosis (surgical connection), various tumors (cancer of the bile duct, gallbladder cancer, cancer of the ampulla of Vater, pancreatic cancer, cancer of the duodenum), anaerobic organisms such as Clostridium and Bacteroides (especially in the elderly and those who have undergone previous surgery of the biliary system). Parasites which may infect the liver and bile ducts may cause cholangitis; these include the roundworm Ascaris lumbricoides and the liver flukes Clonorchis sinensis, Opisthorchis viverrini and Opisthorchis felineus. In people with AIDS, a large number of opportunistic organisms has been known to cause AIDS cholangiopathy, but the risk has rapidly diminished since the introduction of effective AIDS treatment. Cholangitis may also complicate medical procedures involving the bile duct, especially ERCP. To prevent this, it is recommended that those undergoing ERCP for any indication receive prophylactic (preventative) antibiotics.

The presence of a permanent biliary stent (e.g. in pancreatic cancer) slightly increases the risk of cholangitis, but stents of this type are often needed to keep the bile duct patent under outside pressure

Diagnosis:
Routine blood tests show features of acute inflammation (raised white blood cell count and elevated C-reactive protein level), and usually abnormal liver function tests (LFTs). In most cases the LFTs will be consistent with obstruction: raised bilirubin, alkaline phosphatase and ?-glutamyl transpeptidase. In the early stages, however, pressure on the liver cells may be the main feature and the tests will resemble those in hepatitis, with elevations in alanine transaminase and aspartate transaminase.

Blood cultures are often performed in people with fever and evidence of acute infection. These yield the bacteria causing the infection in 36% of cases, usually after 24–48 hours of incubation. Bile, too, may be sent for culture during ERCP (see below). The most common bacteria linked to ascending cholangitis are gram-negative bacilli: Escherichia coli (25–50%), Klebsiella (15–20%) and Enterobacter (5–10%). Of the gram-positive cocci, Enterococcus causes 10–20%.

You may have the following tests to look for blockages:

*Abdominal ultrasound

*Endoscopic retrograde cholangiopancreatography (ERCP)

*Magnetic resonance cholangiopancreatography (MRCP)

*Percutaneous transhepatic cholangiogram (PTCA)

*You may also have the following blood tests:

#Bilirubin level
#Liver enzyme levels
#Liver function tests
#White blood count (WBC)
Treatment:
Quick diagnosis and treatment are very important.Antibiotics to cure infection is the first treatment done in most cases. ERCP or other surgical procedure is done when the patient is stable.Patients who are very ill or are quickly getting worse may need surgery right away.

Cholangitis requires admission to hospital. Intravenous fluids are administered, especially if the blood pressure is low, and antibiotics are commenced. Empirical treatment with broad-spectrum antibiotics is usually necessary until it is known for certain which pathogen is causing the infection, and to which antibiotics it is sensitive. Combinations of penicillins and aminoglycosides are widely used, although ciprofloxacin has been shown to be effective in most cases, and may be preferred to aminoglycosides because of fewer side effects. Metronidazole is often added to specifically treat the anaerobic pathogens, especially in those who are very ill or at risk of anaerobic infections. Antibiotics are continued for 7–10 days. Drugs that increase the blood pressure (vasopressors) may also be required to counter the low blood pressure.
Prognosis:
Acute cholangitis carries a significant risk of death, the leading cause being irreversible shock with multiple organ failure (a possible complication of severe infections). Improvements in diagnosis and treatment have led to a reduction in mortality: before 1980, the mortality rate was greater than 50%, but after 1980 it was 10–30%. Patients with signs of multiple organ failure are likely to die unless they undergo early biliary drainage and treatment with systemic antibiotics. Other causes of death following severe cholangitis include heart failure and pneumonia.

Risk Factors:
Risk factors include a previous history of gallstones, sclerosing cholangitis, HIV, narrowing of the common bile duct, and, rarely, travel to countries where you might catch a worm or parasite infection.

Risk factors indicating an increased risk of death include older age, female gender, a history of liver cirrhosis, biliary narrowing due to cancer, acute renal failure and the presence of liver abscesses. Complications following severe cholangitis include renal failure, respiratory failure (inability of the respiratory system to oxygenate blood and/or eliminate carbon dioxide), cardiac arrhythmia, wound infection, pneumonia, gastrointestinal bleeding and myocardial ischemia (lack of blood flow to the heart, leading to heart attacks).

Prevention:
Treatment of gallstones, tumors, and infestations of parasites may reduce the risk for some people. A metal or plastic stent that is placed in the bile system may be needed to prevent the infection from returning.
Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.
Resources:
http://www.nlm.nih.gov/medlineplus/ency/article/000290.htm
http://en.wikipedia.org/wiki/Ascending_cholangitis

Categories
Ailmemts & Remedies Pediatric

Biliary Atresia

DEfinition:
Biliary atresia is a rare condition in newborn infants in which the common bile duct(that carry a liquid called bile from the liver to the gallbladder) between the liver and the small intestine is blocked or absent. If unrecognized, the condition leads to liver failure — but not kernicterus, as the liver is still able to conjugate bilirubin, and conjugated bilirubin is unable to cross the blood-brain barrier. The cause of the condition is unknown. The only effective treatments are certain surgeries such as the kasai procedure, or liver transplantation.

..You may click to see the picture

Biliary atresia is a very rare disorder. About one in 10,000 to 20,000 babies in the U.S are affected every year. Biliary atresia seems to affect girls slightly more often than boys. Within the same family, it is common for only one child in a pair of twins or only one child within the same family to have it. Asians and African-Americans are affected more frequently than Caucasians. There does not appear to be any link to medications or immunizations given immediately before or during pregnancy.

This is now effective surgery which can relieve symptoms in most cases. Liver transplant is also an option, and as a result, survival rates are now above 90 per cent.

Causes & b Risk Factors:
Biliary atresia is due to a progressive fibrosis or scarring of the bile ducts responsible for draining bile from the liver, which eventually leads to atresia or loss of the biliary system. It’s not clear how or why this occurs, and many factors may be involved. It may be due to a problem in the developing embryo (10 to 20 per cent – other congenital abnormalities may also be present) or around the time of birth or shortly afterwards (80 to 90 per cent). It occurs more often in Asian and African-American newborns than Caucasian.

Bile is made by the liver and helps with the digestion of fats. If bile is not removed from the liver, it builds up and begins to damage it. The baby will then develop jaundice, or a yellow colour of the skin as levels of the bile chemical bilirubin rise in the blood. Other symptoms include dark coloured urine and pale stools. Many newborn babies become jaundiced but this is usually temporary. Jaundice lasting for longer than 14 days, especially if there are other symptoms such as an enlarged liver or failure to thrive, is a worrying sign and must be investigated further.

Pathophysiology:
There is no known cause of biliary atresia. There have been many theories about ethiopathogenesis such as Reovirus 3 infection, congenital malformation, congenital CMV infection, autoimmune theory. This means that the etiology and pathogenesis of biliary atresia are largely unknown. However, there have been extensive studies about the pathogenesis and proper management of progressive liver fibrosis, which is arguably one of the most important aspects of biliary atresia patients. As the biliary tract cannot transport bile to the intestine, bile is retained in the liver (known as stasis) and results in cirrhosis of the liver. Proliferation of the small bile ductules occur, and peribiliary fibroblasts become activated. These “reactive” biliary epithelial cells in cholestasis, unlike normal condition, produce and secrete various cytokines such as CCL-2 or MCP-1, Tumor necrosis factor (TNF), Interleukin-6 (IL-6), TGF-beta, Endothelin (ET), and nitric oxide (NO). Among these, TGF-beta is the most important profibrogenic cytokine that can be seen in liver fibrosis in chronic cholestasis. During the chronic activation of biliary epithelium and progressive fibrosis, afflicted patients eventually show signs and symptoms of portal hypertension (esophagogastric varix bleeding, hypersplenism, hepatorenal syndrome(HRS), hepatopulmonary syndrome(HPS)). The latter two syndromes are essentially caused by systemic mediators that maintain the body within the hyperdynamic states. There are three main types of extrahepatic biliary atresia:- Type I: atresia restricted to the common bile duct. Type II: atresia of the common hepatic duct. Type III: atresia of the right and left hepatic duct. Associated anomalies include, in about 20% cases, cardiac lesions, polysplenia, situs inversus, absent vena cava and a preduodenal portal vein.

Symptoms:
Newborns with this condition may appear normal at birth. However, jaundice (a yellow color to the skin and mucous membranes) develops by the second or third week of life. The infant may gain weight normally for the first month, but then will lose weight and become irritable, and have worsening jaundice.

Other symptoms may include:

•Dark urine
•Enlarged spleen
•Floating stools
•Foul-smelling stools
•Pale or clay-colored stools
•Slow growth
•Slow or no weight gain

Diagnosis:
The health care provider will perform a physical exam, which includes feeling the patient’s belly area. The doctor may feel an enlarged liver.

Tests to diagnose biliary atresia include:

•Abdominal x-ray
•Abdominal ultrasound to examine the liver and bile ducts
•A blood test to look for raised levels of bilirubin and check liver enzyme levels and blood clotting
•Hepatobiliary iminodiacetic acid (HIDA) scan, also called cholescintigraphy, to help determine whether the bile ducts and gallbladder are working properly
•Liver biopsy to determine the severity of cirrhosis or to rule out other causes of jaundice
•An abdominal x-ray to look for an enlarged liver and spleen
•X-ray of the bile ducts (cholangiogram)
•An scan to determine how well bile is flowing (HIDA or TEBIDA)

Treatment :
TreatmentIf the intrahepatic biliary tree is unaffected, surgical reconstruction of the extrahepatic biliary tract is possible. This surgery is called a Kasai procedure (after the Japanese surgeon who developed the surgery, Dr. Morio Kasai) or hepatoportoenterostomy.

....

If the atresia is complete, liver transplantation is the only option(currently has a greater than 95 per cent survival rate at one year). Timely Kasai portoenterostomy (e.g. < 60 postnatal days) has shown better outcomes. Nevertheless, a considerable number of the patients, even if Kasai portoenterostomy has been successful, eventually undergo liver transplantation within a couple of years after Kasai portoenterostomy.

Recent large volume studies from Davenport et al. (Ann Surg, 2008) show that age of the patient is not an absolute clinical factor affecting the prognosis. In the latter study, influence of age differs according to the disease etiology—i.e., whether isolated BA, BASM (BA with splenic malformation ), or CBA(cystic biliary atresia).

It is widely accepted that corticosteroid treatment after a Kasai operation, with or without choleretics and antibiotics, has a beneficial effect on the postoperative bile flow and can clear the jaundice; but the dosing and duration of the ideal steroid protocol have been controversial (“blast dose” vs. “high dose” vs. “low dose”). Furthermore, it has been observed in many retrospective longitudinal studies that steroid does not prolong survival of the native liver or transplant-free survival. Davenport at al. also showed (hepatology 2007) that short-term low-dose steroid therapy following a Kasai operation has no effect on the mid- and long-term prognosis of biliary atresia patients.

Prognosis:
Early surgery will improve the survival of more than a third of babies with this condition. The long-term benefit of liver transplant is not yet known, but is expected to improve survival.

Possible Complications:
•Infection
•Irreversible cirrhosis
•Liver failure
•Surgical complications, including failure of the Kasai procedure

Prevention:
The earlier biliary atresia is detected, the less damage it will have done to the liver and the better the chance of a successful outcome to treatment. The current target is to treat babies before they are eight weeks old.

If the liver has not yet been damaged by cirrhosis, the condition is usually treated through an operation called a Kasai portoenterostomy (or a similar procedure). This involves using a loop of bowel to form a duct to drain the bile from the liver. The operation is named after the Japanese surgeon, Professor Morio Kasai, who developed it in 1959. It was first introduced in the UK in the 1960s.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
http://www.bbc.co.uk/health/physical_health/conditions/biliary_atresia.shtml
http://www.nlm.nih.gov/medlineplus/ency/article/001145.htm
http://en.wikipedia.org/wiki/Biliary_atresia

http://www.mikylah.com/pictures.html

http://www.chw.health.nsw.gov.au/parents/factsheets/biliary_atresia.htm

Categories
Ailmemts & Remedies

Cholangiocarcinoma

Alternative Names: Bile duct cancer

Definition: Cholangiocarcinoma is a cancerous (malignant) growth in the bile duct which drain bile from the liver into the small intestine. Other biliary tract cancers include pancreatic cancer, gall bladder cancer, and cancer of the ampulla of Vater. Cholangiocarcinoma is a relatively rare adenocarcinoma, with an annual incidence of 1–2 cases per 100,000 in the Western world, but rates of cholangiocarcinoma have been rising worldwide over the past several decades.

CLICK  & SEE THE PICTURES

Causes
Cancerous tumors of the bile ducts are usually slow-growing and do not spread (metastasize) quickly. However, many of these tumors are already advanced by the time they are found.

A cholangiocarcinoma may start anywhere along the bile ducts. These tumors block off the bile ducts.

They affect both men and women. Most patients are older than 65.

Risk Factors:
Although most patients present without any known risk factors evident, a number of risk factors for the development of cholangiocarcinoma have been described; in the Western world, the most common of these is primary sclerosing cholangitis (PSC), an inflammatory disease of the bile ducts which is in turn closely associated with ulcerative colitis (UC). Epidemiologic studies have suggested that the lifetime risk of developing cholangiocarcinoma for a person with PSC is 10%–15%,  although autopsy series have found rates as high as 30% in this population. The mechanism by which PSC increases the risk of cholangiocarcinoma is not well-understood.
Certain parasitic liver diseases may be risk factors as well. Colonization with the liver flukes Opisthorchis viverrini (found in Thailand, Laos, and Malaysia) or Clonorchis sinensis (found in Japan, Korea, and Vietnam) has been associated with the development of cholangiocarcinoma. Patients with chronic liver disease, whether in the form of viral hepatitis (e.g. hepatitis B or C), alcoholic liver disease, or cirrhosis from other causes, are at increased risk of cholangiocarcinoma. HIV infection was also identified in one study as a potential risk factor for cholangiocarcinoma, although it was unclear whether HIV itself or correlated factors (e.g. hepatitis C infection) were responsible for the association.

click to see
Congenital liver abnormalities, such as Caroli’s syndrome or choledochal cysts, have been associated with an approximately 15% lifetime risk of developing cholangiocarcinoma. The rare inherited disorders Lynch syndrome II and biliary papillomatosis are associated with cholangiocarcinoma. The presence of gallstones (cholelithiasis) is not clearly associated with cholangiocarcinoma. However, intrahepatic stones (so-called hepatolithiasis), which are rare in the West but common in parts of Asia, have been strongly associated with cholangiocarcinoma. Exposure to Thorotrast, a form of thorium dioxide which was used as a radiologic contrast medium, has been linked to the development of cholangiocarcinoma as late as 30–40 years after exposure; Thorotrast was banned in the United States in the 1950s due to its carcinogenicity.

Ricks for this condition include:

* Bile duct (choledochal) cysts
* Chronic biliary irritation
* History of infection with the parasitic worm, liver flukes
* Primary sclerosing cholangitis

Cholangiocarcinoma is rare. It occurs in approximately 2 out of 100,000 people.

Symptoms
* Chills
* Clay-colored stools
* Fever
* Itching
* Loss of appetite
* Pain in the upper right abdomen that may radiate to the back
* Weight loss
* Yellowing of the skin (jaundice)

The most common physical indications of cholangiocarcinoma are abnormal liver function tests, jaundice (yellowing of the eyes and skin), which occurs only when bile ducts are blocked by the tumor, abdominal pain (30%–50%), generalized itching (66%), weight loss (30%–50%), fever (up to 20%), or changes in stool or urine color.To some extent, the symptoms depend upon the location of the tumor: Patients with cholangiocarcinoma in the extrahepatic bile ducts (outside the liver) are more likely to have jaundice, while those with tumors of the bile ducts within the liver often have pain without jaundice.
.Yellowing of the skin and eyes (jaundice)->     CLICK & SEE
Blood tests of liver function in patients with cholangiocarcinoma often reveal a so-called “obstructive picture,” with elevated bilirubin, alkaline phosphatase, and gamma glutamyl transferase levels, and relatively normal transaminase levels. Such laboratory findings suggest obstruction of the bile ducts, rather than inflammation or infection of the liver, as the primary cause of the jaundice.  CA19-9 is elevated in most cases

Diagnosis:–
Cholangiocarcinoma is definitively diagnosed from tissue, i.e. it is proven by biopsy or examination of the tissue excised at surgery. It may be suspected in a patient with obstructive jaundice. Considering it as the working-diagnosis may be challenging in patients with primary sclerosing cholangitis (PSC); such patients are at high risk of developing cholangiocarcinoma, but the symptoms may be difficult to distinguish from those of PSC. Furthermore, in patients with PSC, such diagnostic clues as a visible mass on imaging or biliary ductal dilatation may not be evident.

Exams and Tests:-
Blood tests
Blood tests that show abnormal function.
There are no specific blood tests that can diagnose cholangiocarcinoma by themselves. Serum levels of carcinoembryonic antigen (CEA) and CA19-9 are often elevated, but are not sensitive or specific enough to be used as a general screening tool. However, they may be useful in conjunction with imaging methods in supporting a suspected diagnosis of cholangiocarcinoma.
:

Abdominal imaging
CT scan showing cholangiocarcinomaUltrasound of the liver and biliary tree is often used as the initial imaging modality in patients with suspected obstructive jaundice. Ultrasound can identify obstruction and ductal dilatation and, in some cases, may be sufficient to diagnose cholangiocarcinoma.  Computed tomography (CT) scanning may also play an important role in the diagnosis of cholangiocarcinoma.

Tests that show a tumor or blockage in the bile duct:
*Abdominal CT scan
*Abdominal ultrasound
*CT scan-directed biopsy
*Cytology
*Endoscopic retrograde cholangiopancreatography (ERCP)
*Percutaneous transhepatic cholangiogram (PTCA)

Liver function tests (especially bilirubin)

Treatment  :-
The goal is to treat the cancer and the blockage it causes. When possible, surgery to remove the tumor is the treatment of choice and may result in a cure. However, often the cancer has already spread by the time it is diagnosed.

Chemotherapy or radiation may be given after surgery to decrease the risk of the cancer returning. However, the benefit of this treatment is not certain.

Endoscopic therapy or surgery can clear blockages in the biliary ducts and relieve jaundice in patients when the tumor cannot be removed.

For patients with cancer that cannot be removed, radiation therapy may be beneficial. Chemotherapy may be added to radiation therapy or used when the tumor has spread. However, this is rarely effective.

Support Groups:-
You can ease the stress of illness by joining a support group with members who share common experiences and problems (see cancer – support group).

Hospice is often a good resource for patients with cholangiocarcinoma that cannot be cured.

Prognosis:

Surgical resection offers the only potential chance of cure in cholangiocarcinoma. For non-resectable cases, the 5-year survival rate is 0% where the disease is inoperable because distal lymph nodes show metastases[63], and less than 5% in general. Overall median duration of survival is less than 6 months in inoperable, untreated, otherwise healthy patients with tumors involving the liver by way of the intrahepatic bile ducts and hepatic portal vein.

For surgical cases, the odds of cure vary depending on the tumor location and whether the tumor can be completely, or only partially, removed. Distal cholangiocarcinomas (those arising from the common bile duct) are generally treated surgically with a Whipple procedure; long-term survival rates range from 15%–25%, although one series reported a five year survival of 54% for patients with no involvement of the lymph nodes. Intrahepatic cholangiocarcinomas (those arising from the bile ducts within the liver) are usually treated with partial hepatectomy. Various series have reported survival estimates after surgery ranging from 22%–66%; the outcome may depend on involvement of lymph nodes and completeness of the surgery. Perihilar cholangiocarcinomas (those occurring near where the bile ducts exit the liver) are least likely to be operable. When surgery is possible, they are generally treated with an aggressive approach often including removal of the gallbladder and potentially part of the liver. In patients with operable perihilar tumors, reported 5-year survival rates range from 20%–50%.

The prognosis may be worse for patients with primary sclerosing cholangitis who develop cholangiocarcinoma, likely because the cancer is not detected until it is advanced. Some evidence suggests that outcomes may be improving with more aggressive surgical approaches and adjuvant therapy.

Possible Complications :-
*Infection
*Liver failure
*Spread (metastasis) of tumor to other organs.

When to Contact a Medical Professional :-
Call your health care provider if you have jaundice or other symptoms of cholangiocarcinoma.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
http://en.wikipedia.org/wiki/Cholangiocarcinoma
http://www.nlm.nih.gov/MEDLINEPLUS/ency/article/000291.htm

Enhanced by ZemantaICK
Categories
Human Organ Transplantation

Liver Transplantation

[amazon_link asins=’1455702684,3319072080,0323528449,1118277384,0781720397,B009QOL4UQ,3798512566,8184487703,0323320163′ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’6f1f2b71-7d87-11e7-bcd0-7568b2e27733′]

 

Introduction:Your liver helps fight infections and cleans your blood. It also helps digest food and stores energy for when you need it. You cannot live without a liver that works.

If your liver fails, your doctor may put you on a waiting list for a liver transplant. Doctors do liver transplants when other treatments cannot keep a damaged liver working.
Liver transplantation or hepatic transplantation is the replacement of a diseased liver with a healthy liver allograft. The most commonly used technique is orthotopic transplantation, in which the native liver is removed and the donor organ is placed in the same anatomic location as the original liver. Liver transplantation nowadays is a well accepted treatment option for end-stage liver disease and acute liver failure.

CLICK & SEE THE PICTURES

During a liver transplantation, the surgeon removes the diseased liver and replaces it with a healthy one. Most transplant livers come from a donor who has died. Sometimes a healthy person donates part of his or her liver for a specific patient. In this case the donor is called a living donor. The most common reason for transplantation in adults is cirrhosis. This is a disease in which healthy liver cells are killed and replaced with scar tissue. The most common reason in children is biliary atresia, a disease of the bile ducts.

People who have transplants must take drugs for the rest of their lives to keep their bodies from rejecting their new livers.

Liver transplantation is usually done when other medical treatment cannot keep a damaged liver functioning.

History:-
The first human liver transplant was performed in 1963 by a surgical team led by Dr. Thomas Starzl of Denver, Colorado, United States. Dr. Starzl performed several additional transplants over the next few years before the first short-term success was achieved in 1967 with the first one-year survival posttransplantation. Despite the development of viable surgical techniques, liver transplantation remained experimental through the 1970s, with one year patient survival in the vicinity of 25%. The introduction of cyclosporine by Sir Roy Calne markedly improved patient outcomes, and the 1980s saw recognition of liver transplantation as a standard clinical treatment for both adult and pediatric patients with appropriate indications. Liver transplantation is now performed at over one hundred centres in the USA, as well as numerous centres in Europe and elsewhere. One year patient survival is 80-85%, and outcomes continue to improve, although liver transplantation remains a formidable procedure with frequent complications. Unfortunately, the supply of liver allografts from non-living donors is far short of the number of potential recipients, a reality that has spurred the development of living donor liver transplantation.

Indications:-
Liver transplantation is potentially applicable to any acute or chronic condition resulting in irreversible liver dysfunction, provided that the recipient does not have other conditions that will preclude a successful transplant. Metastatic cancer outside liver, active drug or alcohol abuse and active septic infections are absolute contraindications. While infection with HIV was once considered an absolute contraindication, this has been changing recently. Advanced age and serious heart, pulmonary or other disease may also prevent transplantation (relative contraindications). Most liver transplants are performed for chronic liver diseases that lead to irreversible scarring of the liver, or cirrhosis of the liver.

Techniques
:-
Before transplantation liver support therapy might be indicated (bridging-to-transplantation). Artificial liver support like liver dialysis or bioartificial liver support concepts are currently under preclinical and clinical evaluation. Virtually all liver transplants are done in an orthotopic fashion, that is the native liver is removed and the new liver is placed in the same anatomic location. The transplant operation can be conceptualized as consisting of the hepatectomy (liver removal) phase, the anhepatic (no liver) phase, and the postimplantation phase. The operation is done through a large incision in the upper abdomen. The hepatectomy involves division of all ligamentous attachments to the liver, as well as the common bile duct, hepatic artery, hepatic vein and portal vein. Usually, the retrohepatic portion of the inferior vena cava is removed along with the liver, although an alternative technique preserves the recipient’s vena cava (“piggyback” technique).

The donor’s blood in the liver will be replaced by an ice-cold organ storage solution, such as UW (Viaspan) or HTK until the allograft liver is implanted. Implantation involves anastomoses (connections) of the inferior vena cava, portal vein, and hepatic artery. After blood flow is restored to the new liver, the biliary (bile duct) anastomosis is constructed, either to the recipient’s own bile duct or to the small intestine. The surgery usually takes between five and six hours, but may be longer or shorter due to the difficulty of the operation and the experience of the surgeon.

The large majority of liver transplants use the entire liver from a non-living donor for the transplant, particularly for adult recipients. A major advance in pediatric liver transplantation was the development of reduced size liver transplantation, in which a portion of an adult liver is used for an infant or small child. Further developments in this area included split liver transplantation, in which one liver is used for transplants for two recipients, and living donor liver transplantation, in which a portion of healthy person’s liver is removed and used as the allograft. Living donor liver transplantation for pediatric recipients involves removal of approximately 20% of the liver (Couinaud segments 2 and 3).

Immunosuppressive management:-
Like all other allografts, a liver transplant will be rejected by the recipient unless immunosuppressive drugs are used. The immunosuppressive regimens for all solid organ transplants are fairly similar, and a variety of agents are now available. Most liver transplant recipients receive corticosteroids plus a calcinuerin inhibitor such as tacrolimus or Cyclosporin plus a antimetabolite such as Mycophenolate Mofetil.

Liver transplantation is unique in that the risk of chronic rejection also decreases over time, although recipients need to take immunosuppresive medication for the rest of their lives. It is theorized that the liver may play a yet-unknown role in the maturation of certain cells pertaining to the immune system. There is at least one study by Dr. Starzl’s team at the University of Pittsburgh which consisted of bone marrow biopsies taken from such patients which demonstrate genotypic chimerism in the bone marrow of liver transplant recipients.

Results:-
About 80 to 90 percent of people survive liver transplantation. Survival rates have improved over the past several years because of drugs like cyclosporine and tacrolimus that suppress the immune system and keep it from attacking and damaging the new liver.

Prognosis is quite good. However those with certain illnesses may differ.  There is no exact model to predict survival rates however those with transplant have a 58% chance of surviving 15 years.

Living donor transplantation:-
Living donor liver transplantation (LDLT) has emerged in recent decades as a critical surgical option for patients with end stage liver disease, such as cirrhosis and/or hepatocellular carcinoma often attributable to one or more of the following: long-term alcohol abuse, long-term untreated Hepatitis C infection, long-term untreated Hepatitis B infection. The concept of LDLT is based on (1) the remarkable regenerative capacities of the human liver and (2) the widespread shortage of cadaveric livers for patients awaiting transplant. In LDLT, a piece of healthy liver is surgically removed from a living person and transplanted into a recipient, immediately after the recipient’s diseased liver has been entirely removed.

Historically, LDLT began as a means for parents of children with severe liver disease to donate a portion of their healthy liver to replace their child’s entire damaged liver. The first report of successful LDLT was by Dr. Silvano Raia at the Universidade de São Paulo (USP) Medical School in 1986. Surgeons eventually realized that adult-to-adult LDLT was also possible, and now the practice is common in a few reputable medical institutes. It is considered more technically demanding than even standard, cadaveric donor liver transplantation, and also poses the ethical problems underlying the indication of a major surgical operation (hepatectomy) on a healthy human being. In various case series the risk of complications in the donor is around 10%, and very occasionally a second operation is needed. Common problems are biliary fistula, gastric stasis and infections; they are more common after removal of the right lobe of the liver. Death after LDLT has been reported at 0% (Japan), 0.3% (USA) and <1% (Europe), with risks likely to improve further as surgeons gain more experience in this procedure.

In a typical adult recipient LDLT, 55% of the liver (the right lobe) is removed from a healthy living donor. The donor’s liver will regenerate to 100% function within 4-6 weeks and will reach full volumetric size with recapitulation of the normal structure soon thereafter. It may be possible to remove 70% to 75% of the liver from a healthy living donor without harm in most cases. The transplanted portion will reach full function and the appropriate size in the recipient as well, although it will take longer than for the donor.

For More Information:-

American Liver Foundation
75 Maiden Lane, Suite 603
New York, NY 10038
Phone: 1–800–GO–LIVER (465–4837)
Email: info@liverfoundation.org
Internet: www.liverfoundation.org

Hepatitis Foundation International (HFI)
504 Blick Drive
Silver Spring, MD 20904–2901
Phone: 1–800–891–0707 or 301–622–4200
Fax: 301–622–4702
Email: hepfi@hepfi.org
Internet: www.hepfi.org

United Network for Organ Sharing (UNOS)
P.O. Box 2484
Richmond, VA 23218
Phone: 1–888–894–6361 or 804–782–4800
Internet: www.unos.org

Additional Information on Liver Transplantation :-

The National Digestive Diseases Information Clearinghouse collects resource information on digestive diseases for National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Reference Collection. This database provides titles, abstracts, and availability information for health information and health education resources. The NIDDK Reference Collection is a service of the National Institutes of Health.

To provide you with the most up-to-date resources, information specialists at the clearinghouse created an automatic search of the NIDDK Reference Collection. To obtain this information, you may view the results of the automatic search on Liver Transplantation.

If you wish to perform your own search of the database, you may access and search the NIDDK Reference Collection database online.

National Digestive Diseases Information Clearinghouse
2 Information Way
Bethesda, MD 20892–3570
Phone: 1–800–891–5389
TTY: 1–866–569–1162
Fax: 703–738–4929
Email: nddic@info.niddk.nih.gov
Internet: www.digestive.niddk.nih.gov

You may click to see->

Recent Developments in Transplantation Medicine

What I need to know about Liver Transplantation

Liver Transplantation at UCLA: One of the largest liver transplant centers in the world

You may click to see the external links:-
*Official organ sharing network of U.S.
*Official organ procurement center of the U.S.
*American Liver Foundation: Comprehensive information about Hepatitis C, Liver Transplant and other liver diseases, including links to chapters for finding local resources
*Management of HBV Infection in Liver Transplantation Patients
*Management of HCV Infection and Liver Transplantation
*Antiviral therapy of HCV in the cirrhotic and transplant candidate
*Living Donors Online
*Liver Transplantation Guide and Liver Transplant Surgery in India
*History of pediatric liver transplantation
*ABC Salutaris: Living Donor Liver Transplant
*Organ Donation Awareness and former potential donor blog
*All You Need to Know about Adult Living Donor Liver Transplantation
*Children’s Liver Disease Foundation
*A Liver Donor’s Blog

Resources:
http://www.nlm.nih.gov/medlineplus/livertransplantation.html
http://en.wikipedia.org/wiki/Liver_transplantation
http://digestive.niddk.nih.gov/ddiseases/pubs/livertransplant/

Reblog this post [with Zemanta]
Categories
Diagnonistic Test

ERCP (Endoscopic Retrograde Cholangiopancreatography)

Fluoroscopic image of :en:common bile duct sto...
Image via Wikipedia

[amazon_link asins=’1455723673,1118769414,1493923196,1556641958′ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’84171de6-4815-11e7-874d-29b026a2b537′]

click to see
Endoscopic retrograde cholangiopancreatography (en-doh-SKAH-pik REH-troh-grayd koh-LAN-jee-oh-PANG-kree-uh-TAH-gruh-fee) (ERCP) enables the physician to diagnose problems in the liver, gallbladder, bile ducts, and pancreas. The liver is a large organ that, among other things, makes a liquid called bile that helps with digestion. The gallbladder is a small, pear-shaped organ that stores bile until it is needed for digestion. The bile ducts are tubes that carry bile from the liver to the gallbladder and small intestine. These ducts are sometimes called the biliary tree. The pancreas is a large gland that produces chemicals that help with digestion and hormones such as insulin.
.click to see
ERCP is used primarily to diagnose and treat conditions of the bile ducts, including gallstones, inflammatory strictures (scars), leaks (from trauma and surgery), and cancer. ERCP combines the use of x rays and an endoscope, which is a long, flexible, lighted tube. Through the endoscope, the physician can see the inside of the stomach and duodenum, and inject dyes into the ducts in the biliary tree and pancreas so they can be seen on x rays.

For the procedure, you will lie on your left side on an examining table in an x-ray room. You will be given medication to help numb the back of your throat and a sedative to help you relax during the exam. You will swallow the endoscope, and the physician will then guide the scope through your esophagus, stomach, and duodenum until it reaches the spot where the ducts of the biliary tree and pancreas open into the duodenum. At this time, you will be turned to lie flat on your stomach, and the physician will pass a small plastic tube through the scope. Through the tube, the physician will inject a dye into the ducts to make them show up clearly on x rays. X rays are taken as soon as the dye is injected.

If the exam shows a gallstone or narrowing of the ducts, the physician can insert instruments into the scope to remove or relieve the obstruction. Also, tissue samples (biopsy) can be taken for further testing.

Possible complications of ERCP include pancreatitis (inflammation of the pancreas), infection, bleeding, and perforation of the duodenum. Except for pancreatitis, such problems are uncommon. You may have tenderness or a lump where the sedative was injected, but that should go away in a few days.

ERCP takes 30 minutes to 2 hours. You may have some discomfort when the physician blows air into the duodenum and injects the dye into the ducts. However, the pain medicine and sedative should keep you from feeling too much discomfort. After the procedure, you will need to stay at the hospital for 1 to 2 hours until the sedative wears off. The physician will make sure you do not have signs of complications before you leave. If any kind of treatment is done during ERCP, such as removing a gallstone, you may need to stay in the hospital overnight.

Preparation:-
Your stomach and duodenum must be empty for the procedure to be accurate and safe. You will not be able to eat or drink anything after midnight the night before the procedure, or for 6 to 8 hours beforehand, depending on the time of your procedure. Also, the physician will need to know whether you have any allergies, especially to iodine, which is in the dye. You must also arrange for someone to take you home—you will not be allowed to drive because of the sedatives. The physician may give you other special instructions.

For More Information:-
American Gastroenterological Association (AGA)
National Office
4930 Del Ray Avenue
Bethesda, MD 20814
Phone: 301–654–2055
Fax: 301–654–5920
Email: info@gastro.org
Internet: www.gastro.org

National Digestive Diseases Information Clearinghouse
2 Information Way
Bethesda, MD 20892–3570
Phone: 1–800–891–5389
TTY: 1–866–569–1162
Fax: 703–738–4929
Email: nddic@info.niddk.nih.gov
Internet: www.digestive.niddk.nih.gov

Sources:http://digestive.niddk.nih.gov/ddiseases/pubs/ercp/index.htm

Enhanced by Zemanta
css.php