Categories
Ailmemts & Remedies

Tinnitus

Definition:   Tinnitus is noise or ringing in the ears.It may be a the sensation of hearing ringing, buzzing, hissing, chirping, whistling, or other sounds. The noise can be intermittent or continuous, and can vary in loudness. It is often worse when background noise is low, so you may be most aware of it at night when you’re trying to fall asleep in a quiet room. In very rare cases, the sound beats in sync with your heart (pulsatile tinnitus)……..CLICK & SEE THE PICTURES 

A common problem, tinnitus affects about 1 in 5 people. Tinnitus isn’t a condition itself — it’s a symptom of an underlying condition, such as age-related hearing loss, ear injury or a circulatory system disorder.

Although bothersome, tinnitus usually isn’t a sign of something serious. Although it can worsen with age, for many people, tinnitus can improve with treatment. Treating an identified underlying cause sometimes helps. Other treatments reduce or mask the noise, making tinnitus less noticeable.

There are two kinds of tinnitus:

Subjective tinnitus is tinnitus only one can hear. This is the most common type of tinnitus. It can be caused by ear problems in the outer, middle or inner ear. It also can be caused by problems with the hearing (auditory) nerves or the part of your brain that interprets nerve signals as sound (auditory pathways).

Objective tinnitus is tinnitus the doctor can hear when he or she does an examination. This rare type of tinnitus may be caused by a blood vessel problem, an inner ear bone condition or muscle contractions.
Symptoms:
Tinnitus can be perceived in one or both ears or in the head. It is usually described as a ringing noise but, in some patients, it takes the form of a high-pitched whining, electric buzzing, hissing, humming, tinging or whistling sound or as ticking, clicking, roaring, “crickets” or “tree frogs” or “locusts (cicadas)”, tunes, songs, beeping, sizzling, sounds that slightly resemble human voices or even a pure steady tone like that heard during a hearing test and, in some cases, pressure changes from the interior ear. It has also been described as a “whooshing” sound because of acute muscle spasms, as of wind or waves. Tinnitus can be intermittent or it can be continuous: in the latter case, it can be the cause of great distress. In some individuals, the intensity can be changed by shoulder, head, tongue, jaw or eye movements.

Most people with tinnitus have some degree of hearing loss: they are often unable to clearly hear external sounds that occur within the same range of frequencies as their “phantom sounds”. This has led to the suggestion that one cause of tinnitus might be a homeostatic response of central dorsal cochlear nucleus auditory neurons that makes them hyperactive in compensation to auditory input loss.

The sound perceived may range from a quiet background noise to one that can be heard even over loud external sounds. The specific type of tinnitus called pulsatile tinnitus is characterized by hearing the sounds of one’s own pulse or muscle contractions, which is typically a result of sounds that have been created from the movement of muscles near to one’s ear, changes within the canal of one’s ear or issues related to blood flow of the neck or face.

Causes:
Prolonged exposure to loud sounds is the most common cause of tinnitus. Up to 90% of people with tinnitus have some level of noise-induced hearing loss. The noise causes permanent damage to the sound-sensitive cells of the cochlea, a spiral-shaped organ in the inner ear. Carpenters, pilots, rock musicians, street-repair workers, and landscapers are among those whose jobs put them at risk, as are people who work with chain saws, guns, or other loud devices or who repeatedly listen to loud music. A single exposure to a sudden extremely loud noise can also cause tinnitus...CLICK & SEE : 

A variety of other conditions and illnesses may lead to tinnitus and they are as follows:
*Blockages of the ear due to a buildup of wax, an ear infection, or rarely, a benign tumor of the nerve that allows us to hear (auditory nerve)

*Certain drugs — most notably aspirin, several types of antibiotics, anti-inflammatories, sedatives, and antidepressants, as well as quinine medications; tinnitus is cited as a potential side effect for about 200 prescription and nonprescription drugs.

*The natural aging process, which can cause deterioration of the cochlea or other parts of the ear

*Meniere’s disease, which affects the inner part of the ear

*Otosclerosis, a disease that results in stiffening of the small bones in the middle ear

*Other medical conditions such as high blood pressure, cardiovascular disease, circulatory problems, anemia, allergies, an underactive thyroid gland, and diabetes

*Neck or jaw problems, such as temporomandibular joint (TMJ) syndrome

*Multiple sclerosis

*Injuries to the head and neck

*External ear infection

*Acoustic shock

*Cerumen (earwax) impaction

*Middle ear effusion

*Superior canal dehiscence

*Sensorineural hearing loss

*Acoustic neuroma*Mercury or lead poisoning

*Neurologic disorders

*Temporomandibular joint dysfunction

*Giant cell arteritis

*Metabolic disorders like thyroid disease, hyperlipidemia, vitamin B12 deficiency, iron deficiency anemia, psychiatric disorders,diabetis

*Psychiatric disorders like depression, anxiety
Tinnitus can worsen in some people if they drink alcohol, smoke cigarettes, drink caffeinated beverages, or eat certain foods. For reasons not yet entirely clear to researchers, stress and fatigue seem to worsen tinnitus.

Diagnosis:
The basis of quantitatively measuring tinnitus relies on the brain’s tendency to select out only the loudest sounds heard. Based on this tendency, the amplitude of a patient’s tinnitus can be measured by playing sample sounds of known amplitude and asking the patient which they hear. The volume of the tinnitus will always be equal to or less than that of the sample noises heard by the patient. This method works very well to gauge objective tinnitus (see above). For example: if a patient has a pulsatile paraganglioma in their ear, they will not be able to hear the blood flow through the tumor when the sample noise is 5 decibels louder than the noise produced by the blood. As sound amplitude is gradually decreased, the tinnitus will become audible and the level at which it does so provides an estimate of the amplitude of the objective tinnitus.

Objective tinnitus, however, is quite uncommon. Often, patients with pulsatile tumors will report other coexistent sounds, distinct from the pulsatile noise, that will persist even after their tumor has been removed. This is generally subjective tinnitus, which, unlike the objective form, cannot be tested by comparative methods. However, pulsatile tinnitus can be a symptom of intracranial vascular abnormalities and should be evaluated for bruits by a medical professional with auscultation over the neck, eyes and ears. If the exam reveals a bruit, imaging studies such as transcranial doppler (TCD) or magnetic resonance angiography (MRA) should be performed.

The accepted definition of chronic tinnitus, as compared to normal ear noise experience, is five minutes of ear noise occurring at least twice a week. However, people with chronic tinnitus often experience the noise more frequently than this and can experience it continuously or regularly, such as during the night when there is less environmental noise to mask the sound.

Treatment:
Psychological:
The best supported treatment for tinnitus is a type of counseling called cognitive behavioral therapy (CBT) which can be delivered via the internet or in person. It decreases the amount of stress those with tinnitus feel. These benefits appear to be independent of any effect on depression or anxiety in an individual. Relaxation techniques may also be useful. A program has been developed by the United States Department of Veterans Affairs.

Medications:
There are no medications as of 2014 that are effective for tinnitus and, thus, none is recommended. There is not enough evidence to determine if antidepressants or acamprosate is useful. While there is tentative evidence for benzodiazepines, it is insufficient to support usage. Anticonvulsants have not been found to be useful.

Botulinum toxin injection has been tried with some success in cases of objective tinnitus (palatal tremor)

Others:
The use of sound therapy by either hearing aids or tinnitus maskers helps the brain ignore the specific tinnitus frequency. Although these methods are poorly supported by evidence, there are no negative effects, which makes them a reasonable option. There is some tentative evidence supporting tinnitus retraining therapy. There is little evidence supporting the use of transcranial magnetic stimulation. It is thus not recommended.

Alternative   Therapy :
Ginkgo biloba does not appear to be effective. Tentative evidence supports zinc supplementation and in those with sleep problems, melatonin. The American Academy of Otolaryngology, however, recommends against melatonin and zinc.

Doing YOGA EXERCISE daily with PRANAYAMA (specially Anuloma belome , Kapalabhati and Bhramari ) may help a lot to improve and sometimes cure totally.
Prognosis:
Most people with tinnitus get used to it over time; for a minority, it remains a significant problem.

Prevention:
Prolonged exposure to sound or noise levels as low as 70 dB can result in damage to hearing (see noise health effects). This can lead to tinnitus. Ear plugs can help with prevention.

Avoidance of potentially ototoxic medicines. Ototoxicity of multiple medicines can have a cumulative effect and can increase the damage done by noise. If ototoxic medications must be administered, close attention by the physician to prescription details, such as dose and dosage interval, can reduce the damage done.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
https://en.wikipedia.org/wiki/Tinnitus
http://www.mayoclinic.org/diseases-conditions/tinnitus/multimedia/tinnitus/
http://www.webmd.com/a-to-z-guides/understanding-tinnitus-basics

Advertisements
Categories
Ailmemts & Remedies

BALANCE DISORDER

Definition:
A balance disorder is a disturbance that causes an individual to feel unsteady, for example when standing or walking. It may be accompanied by feelings of giddiness or wooziness, or having a sensation of movement, spinning, or floating. Balance is the result of several body systems working together: the visual system (eyes), vestibular system (ears) and proprioception (the body’s sense of where it is in space). Degeneration or loss of function in any of these systems can lead to balance deficits
CLICK  & SEE THE PICTURES
Balance disorders can be caused by certain health conditions, medications, or a problem in the inner ear or the brain.

Our sense of balance is primarily controlled by a maze-like structure in our inner ear called the labyrinth, which is made of bone and soft tissue. At one end of the labyrinth is an intricate system of loops and pouches called the semicircular canals and the otolithic organs, which help us maintain our balance. At the other end is a snail-shaped organ called the cochlea, which enables us to hear. The medical term for all of the parts of the inner ear involved with balance is the vestibular system.

Symptoms:
When balance is impaired, an individual has difficulty maintaining upright orientation. For example, an individual may not be able to walk without staggering, or may not even be able to stand. They may have falls or near-falls. The symptoms may be recurring or relatively constant. When symptoms exist, they may include:

*Dizziness or vertigo (a spinning sensation)
*Falling or feeling as if you are going to fall
*Lightheadedness, faintness, or a floating sensation
*Blurred vision
*Confusion or disorientation

Some individuals may also experience nausea and vomiting, diarrhea, faintness, changes in heart rate and blood pressure, fear, anxiety, or panic. Some reactions to the symptoms are fatigue, depression, and decreased concentration. The symptoms may appear and disappear over short time periods or may last for a longer period.

Cognitive dysfunction (disorientation) may occur with vestibular disorders. Cognitive deficits are not just spatial in nature, but also include non-spatial functions such as object recognition memory. Vestibular dysfunction has been shown to adversely affect processes of attention and increased demands of attention can worsen the postural sway associated with vestibular disorders. Recent MRI studies also show that humans with bilateral vestibular damage undergo atrophy of the hippocampus which correlates with their degree of impairment on spatial memory tasks

Causes:
Problems with balance can occur when there is a disruption in any of the vestibular, visual, or proprioceptive systems. Abnormalities in balance function may indicate a wide range of pathologies from causes like inner ear disorders, low blood pressure, brain tumors, and brain injury including stroke.

Many different terms are often used for dizziness, including lightheaded, floating, woozy, giddy, confused, helpless, or fuzzy. Vertigo, Disequilibrium and pre-syncope are the terms in use by most physicians and have more precise definitions.

*Vertigo: Vertigo is the sensation of spinning or having the room spin about you. Most people find vertigo very disturbing and report associated nausea and vomiting.

*Disequilibrium: Disequilibrium is the sensation of being off balance, and is most often characterized by frequent falls in a specific direction. This condition is not often associated with nausea or vomiting.

*Pre-syncope (links to syncope, which is different): Pre-syncope is a feeling of lightheadedness or simply feeling faint. Syncope, by contrast, is actually fainting. A circulatory system deficiency, such as low blood pressure, can contribute to a feeling of dizziness when one suddenly stands up.

Problems in the skeletal or visual systems, such as arthritis or eye muscle imbalance, may also cause balance problems.

Related to the ear:
Causes of dizziness related to the ear are often characterized by vertigo (spinning) and nausea. Nystagmus (flickering of the eye, related to the Vestibulo-ocular reflex [VOR]) is often seen in patients with an acute peripheral cause of dizziness.

*Benign Paroxysmal Positional Vertigo (BPPV) – The most common cause of vertigo. It is typically described as a brief, intense sensation of spinning that occurs when there are changes in the position of the head with respect to gravity. An individual may experience BPPV when rolling over to the left or right, upon getting out of bed in the morning, or when looking up for an object on a high shelf.  The cause of BPPV is the presence of normal but misplaced calcium crystals called otoconia, which are normally found in the utricle and saccule (the otolith organs) and are used to sense movement. If they fall from the utricle and become loose in the semicircular canals, they can distort the sense of movement and cause a mismatch between actual head movement and the information sent to the brain by the inner ear, causing a spinning sensation.

*Labyrinthitis – An inner ear infection or inflammation causing both dizziness (vertigo) and hearing loss.

*Vestibular neuronitis – an infection of the vestibular nerve, generally viral, causing vertigo

[amazon_link asins=’B00UW9E65E,B00UG2OTDQ’ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’035c5dbe-f8b6-11e6-ba38-3b2f1d7273f5′]

*Cochlear Neuronitis – an infection of the Cochlear nerve, generally viral, causing sudden deafness but no vertigo.

*Trauma – Injury to the skull may cause either a fracture or a concussion to the organ of balance. In either case an acute head injury will often result in dizziness and a sudden loss of vestibular function.

*Surgical trauma to the lateral semicircular canal (LSC) is a rare complication which does not always result in cochlear damage. Vestibular symptoms are pronounced. Dizziness and instability usually persist for several months and sometimes for a year or more.

   *Ménière’s disease – an inner ear fluid balance disorder that causes lasting episodes of vertigo, fluctuating hearing loss, tinnitus (a ringing or roaring in the ears), and the sensation of fullness in the ear. The cause of Ménière’s disease is unknown.

    *Perilymph fistula a leakage of inner ear fluid from the inner ear. It can occur after head injury, surgery, physical exertion or without a known cause.

    *Superior canal dehiscence syndrome – a balance and hearing disorder caused by a gap in the temporal bone, leading to the dysfunction of the superior canal.

[amazon_link asins=’B01GF3UFBY,0071819207′ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’7fa8bd20-f8b6-11e6-ba18-49e265c9d1df’]

  *Bilateral vestibulopathy – a condition involving loss of inner ear balance function in both ears. This may be caused by certain antibiotics, anti-cancer, and other drugs or by chemicals such as solvents, heavy metals, etc., which are ototoxic; or by diseases such as syphilis or autoimmune disease; or other causes. In addition, the function of the semicircular canal can be temporarily affected by a number of medications or combinations of medications.

Related to the brain and central nervous system:
Brain related causes are less commonly associated with isolated vertigo and nystagmus but can still produce signs and symptoms, which mimic peripheral causes. Disequilibrium is often a prominent feature.

*Degenerative: age related decline in balance function
*Infectious: meningitis, encephalitis, epidural abscess, syphilis
*Circulatory: cerebral or cerebellar ischemia or hypoperfusion, stroke, lateral medullary syndrome (Wallenberg’s syndrome)
*Autoimmune: Cogan syndrome
*Structural: Arnold-Chiari malformation, hydrocephalus
*Systemic: multiple sclerosis, Parkinson’s disease
*Vitamin deficiency: Vitamin B12 deficiency
*CNS or posterior neoplasms, benign or malignant
*Neurological: Vertiginous epilepsy
*Other – There are a host of other causes of dizziness not related to the ear.

*Mal de debarquement is rare disorder of imbalance caused by being on board a ship. Patients suffering from this condition experience disequilibrium          even when they get off the ship. Typically treatments for seasickness are ineffective for this syndrome.

*Motion sickness – a conflict between the input from the various systems involved in balance causes an unpleasant sensation. For this reason, looking          out of the window of a moving car is much more pleasant than looking inside the vehicle.

*Migraine-associated vertigo
*Toxins, drugs, medications

Pathophysiology:
The semicircular canals, found within the vestibular apparatus, let us know when we are in a rotary (circular) motion. The semicircular canals are fluid-filled. Motion of the fluid tells us if we are moving. The vestibule is the region of the inner ear where the semicircular canals converge, close to the cochlea (the hearing organ). The vestibular system works with the visual system to keep objects in focus when the head is moving. This is called the vestibulo-ocular reflex (VOR).
Click & see :
Movement of fluid in the semicircular canals signals the brain about the direction and speed of rotation of the head – for example, whether we are nodding our head up and down or looking from right to left. Each semicircular canal has a bulbed end, or enlarged portion, that contains hair cells. Rotation of the head causes a flow of fluid, which in turn causes displacement of the top portion of the hair cells that are embedded in the jelly-like cupula. Two other organs that are part of the vestibular system are the utricle and saccule. These are called the otolithic organs and are responsible for detecting linear acceleration, or movement in a straight line. The hair cells of the otolithic organs are blanketed with a jelly-like layer studded with tiny calcium stones called otoconia. When the head is tilted or the body position is changed with respect to gravity, the displacement of the stones causes the hair cells to bend.

click & see
The balance system works with the visual and skeletal systems (the muscles and joints and their sensors) to maintain orientation or balance. For example, visual signals are sent to the brain about the body’s position in relation to its surroundings. These signals are processed by the brain, and compared to information from the vestibular, visual and the skeletal systems.
Diagnosis:
Diagnosis of a balance disorder is complicated because there are many kinds of balance disorders and because other medical conditions — including ear infections, blood pressure changes, and some vision problems — and some medications may contribute to a balance disorder. A person experiencing dizziness should see a physiotherapist or physician for an evaluation. A physician can assess for a medical disorder, such as a stroke or infection, if indicated. A physiotherapist can assess balance or a dizziness disorder and provide specific treatment.

The primary physician may request the opinion of an otolaryngologist to help evaluate a balance problem. An otolaryngologist is a physician/surgeon who specializes in diseases and disorders of the ear, nose, throat, head, and neck, sometimes with expertise in balance disorders. He or she will usually obtain a detailed medical history and perform a physical examination to start to sort out possible causes of the balance disorder. The physician may require tests and make additional referrals to assess the cause and extent of the disruption of balance. The kinds of tests needed will vary based on the patient’s symptoms and health status. Because there are so many variables, not all patients will require every test.

Diagnostic testing:
Tests of vestibular system (balance) function include electronystagmography (ENG), Videonystagmograph (VNG), rotation tests, Computerized Dynamic Posturography (CDP), and Caloric reflex test.

Tests of auditory system (hearing) function include pure-tone audiometry, speech audiometry, acoustic-reflex, electrocochleography (ECoG), otoacoustic emissions (OAE), and auditory brainstem response test (ABR; also known as BER, BSER, or BAER).

Other diagnostic tests include magnetic resonance imaging (MRI) and computerized axial tomography (CAT, or CT).

Treatment and Prevention:
There are various options for treating balance disorders. One option includes treatment for a disease or disorder that may be contributing to the balance problem, such as ear infection, stroke, multiple sclerosis, spinal cord injury, Parkinson’s, neuromuscular conditions, acquired brain injury, cerebellar dysfunctions and/or ataxia. Individual treatment will vary and will be based upon assessment results including symptoms, medical history, general health, and the results of medical tests. Additionally, tai chi may be a cost-effective method to prevent falls in the elderly.

Many types of balance disorders will require balance training, prescribed by an occupational therapist or physiotherapist. Physiotherapists often administer standardized outcome measures as part of their assessment in order to gain useful information and data about a patient’s current status. Some standardized balance assessments or outcome measures include but are not limited to the Functional Reach Test, Clinical Test for Sensory Integration in Balance (CTSIB), Berg Balance Scale and/or Timed Up and Go The data and information collected can further help the physiotherapist develop an intervention program that is specific to the individual assessed. Intervention programs may include training activities that can be used to improve static and dynamic postural control, body alignment, weight distribution, ambulation, fall prevention and sensory function. Although treatment programs exist which seek to aid the brain in adapting to vestibular injuries, it is important to note that it is simply that – an adaptation to the injury. Although the patient’s balance is restored, the balance system injury still exists

Benign Paroxysmal Positional Vertigo (BPPV):
It is caused by misplaced crystals within the ear. Treatment, simply put, involves moving these crystals out of areas that cause vertigo and into areas where they do not. A number of exercises have been developed to shift these crystals. The following article explains with diagrams how these exercises can be performed at the office or at home with some help: The success of these exercises depends on their being performed correctly.

The two exercises explained in the above article are:

*The Brandt-Daroff Exercises, which can be done at home and have a very high success rate but are unpleasant and time consuming to perform.

*The Epley’s exercises are often performed by a doctor or other trained professionals and should not be performed at home. Various devices are available      for home BPPV treatment.

Ménière’s disease:
  *Diet:
Dietary changes such as reducing intake of sodium (salt) may help. For some people, reducing alcohol, caffeine, and/or avoiding nicotine may be               helpful. Stress has also been shown to make the symptoms associated with Ménière’s worse.

 *Drugs:
#Beta-histine (Serc) is available in some countries and is thought to reduce the frequency of symptoms
#Diuretics such as hydrochlorothiazide (Diazide) have also been shown to reduce the frequency of symptoms
#Aminoglycoside antibiotics (gentamicin) can be used to treat Ménière’s disease. Systemic streptomycin (given by injection) and topical gentamicin         (given directly to the inner ear) are useful for their ability to affect the hair cells of the balance system. Gentamicin also can affect the hair  cells of the cochlea, though, and cause hearing loss in about 10% of patients. In cases that do not respond to medical management, surgery may be indicated.

      *Surgery for Ménière’s disease is a last resort.
#Vestibular neuronectomy can cure Ménière’s disease but is very involved surgery and not widely available. It involves drilling into the skull and  cutting the balance nerve just as it is about to enter the brain.
#Labyrinthectomy (surgical removal of the whole balance organ) is more widely available as a treatment but causes total deafness in the affected ear.

Labyrinthitis:
Treatment includes balance retraining exercises (vestibular rehabilitation). The exercises include movements of the head and body specifically developed for the patient. This form of therapy is thought to promote habituation, adaptation of the vestibulo-ocular reflex, and/or sensory substitution. Vestibular retraining programs are administered by professionals with knowledge and understanding of the vestibular system and its relationship with other systems in the body.

Bilateral vestibular loss:
Dysequilibrium arising from bilateral loss of vestibular function – such as can occur from ototoxic drugs such as gentamicin – can also be treated with balance retraining exercises (vestibular rehabilitation) although the improvement is not likely to be full recovery

Medication:
Sedative drugs are often prescribed for vertigo and dizziness, but these usually treat the symptoms rather than the underlying cause. Lorazepam (Ativan) is often used and is a sedative which has no effect on the disease process rather helps patients cope with the sensation.

Anti-nauseants, like those prescribed for motion sickness, are also often prescribed but do not affect the prognosis of the disorder.

Specifically for Meniere’s disease a medication called Serc (Beta-histine) is available. There is some evidence to support it is effective to reduce the frequency of attacks. Also Diuretics, like Diazide (HCTZ/triamterene), are effective in many patients. Finally, ototoxic medications delivered either systemically or through the eardrum can eliminate the vertigo associated with Meniere’s in many cases, although there is about a 10% risk of further hearing loss when using ototoxic medications.

Treatment is specific for underlying disorder of balance disorder:

#anticholinergics
#antihistamines
#benzodiazepines
#calcium channel antagonists, specifically Verapamil and Nimodipine
#GABA modulators, specifically gabapentin and baclofen
#Neurotransmitter reuptake inhibitors such as SSRI’s, SNRI’s and Tricyclics

Research:
Scientists at the National Institute on Deafness and Other Communication Disorders (NIDCD) are working to understand the various balance disorders and the complex interactions between the labyrinth, other balance-sensing organs, and the brain. NIDCD scientists are studying eye movement to understand the changes that occur in aging, disease, and injury, as well as collecting data about eye movement and posture to improve diagnosis and treatment of balance disorders. They are also studying the effectiveness of certain exercises as a treatment option.

Other projects supported by the NIDCD include studies of the genes essential to normal development and function in the vestibular system. NIDCD scientists are also studying inherited syndromes of the brain that affect balance and coordination.

The NIDCD supports research to develop new tests and refine current tests of balance and vestibular function. For example, NIDCD scientists have developed computer-controlled systems to measure eye movement and body position by stimulating specific parts of the vestibular and nervous systems. Other tests to determine disability, as well as new physical rehabilitation strategies, are under investigation in clinical and research settings.

Scientists at the NIDCD hope that new data will help to develop strategies to prevent injury from falls, a common occurrence among people with balance disorders, particularly as they grow older.
Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
http://en.wikipedia.org/wiki/Balance_disorder
http://www.medicinenet.com/vestibular_balance_disorders/article.htm#what_is_a_balance_disorder

Categories
Positive thinking

Train That Brain

[amazon_link asins=’1440511810,1785040111,B073BJHQCL,144052808X,B00SGR3TWU,0761168257,B01CNNT8XG,B000SONEQA,B004PBNGEM’ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’39fa3d1d-6394-11e7-b510-2b63daedf1dd’]

The negative effect of poverty on the intellectual level of children can be reversed.

It may be a politically incorrect question to ask, but the answer may have profound implications for socio-economic development. How well can children from poor or uneducated families do in life? One could make the question even more incorrect, but at the least, equally relevant: what is the influence of children’s family backgrounds on their subsequent mental development? Research in the last few years has provided partial answers to the question, and they are deeply disturbing.

It now turns out that a child’s brain develops according to the stimulus it receives at home.
If you do not provide complex inputs, you do not get complex brains.

To give one example, the more sophisticated the language used at home, the better the chances of good brain development in the first 10 years of a child’s life.

To put it bluntly, if the parents are uneducated, the children can often end up with deficient brains by the age of 10, compared with children from more educated families. Is this the reason why poverty runs in many families through generations?

Scientists from the University of California, Berkeley, are conducting a set of experiments to understand the real nature of the problem. They put cameras in the dining rooms of families — rich and poor — to monitor dinner time conversation. They got children to their labs and tried to give them tasks and measure the brain response. Their initial finding: the brains of children from poor families often resemble that of stroke victims by the age of 10.

Research in other labs around the world corroborates this finding, while also providing explanations as well as solutions to the problem. Parents in poor families do not talk much to their children. “We hope that parents in poor families will at least talk to their children more than they do,” says Mark Kishiyama, psychologist at the University of California, Berkeley. But even if they do, their language is not complex enough. In fact, Adele Diamond, professor of psychiatry at the University of British Columbia, has shown that children in poor families hear 30 million fewer words by the time they are four years old.

Those with low socio-economic status perform poorly in language tests and long-term memory tests. Martha Farah, director at the Centre for Cognitive Neuroscience at the University of Pennsylvania, showed such differences two years ago. Enrico Mezzacappa at the Children’s Hospital in Boston also showed three years ago that low income children perform poorly in speed and accuracy in some problems when compared with those from higher income families. While common sense can attribute these differences to a lack of education and opportunities, neuroscientists suspected that some of these disparities stemmed from differences in the brain. There is now substantial proof for the differences of brain development in children.

The problem is in an area of the brain called the prefrontal cortex. This area is in the front part of the brain, just behind the forehead. The prefrontal cortex is the seat of problem solving and creativity. A deficient prefrontal cortex makes you poor at complex tasks and problem solving. The experiment now being conducted at the University of California at Berkeley has already shown that poor children have deficient prefrontal cortex, thus substantiating the research of Martha Farah. But we also know the reasons, and other research provides us with a means of solving the problem.

It is not just the lack of intellectual stimulus that interferes with brain development. Poor children are usually under high stress, and it is known that high stress interferes with brain development, by producing chemicals that destroy neurons. Another important factor is pollution: they are exposed to a higher amount of pollutants — lead in water is an example — than children in richer families. All these factors combine to work against the brains of poor children. No wonder, then, that poor children are often not able to measure up to their richer counterparts if they manage to enter institutions of higher learning.

However, science also provides us with a solution to the problem.
“The differences in the brain of children can be reversed with proper training,” says Tom Boyce, a developmental psychobiologist at the University of British Columbia. Neuroscientists are now discovering that the brain remains plastic well into old age. For example, in experiments performed at the University of California, San Francisco, scientists have taken old rats — with only a few weeks to live — and made their brains look young purely by providing more inputs.

There is now a booming industry in the West called the brain improvement industry. Some of their products provide mental exercises with visual and auditory inputs that can improve the brain even in old age. We can thus train young brains to be on a par with those of children from more privileged backgrounds, provided we recognise the problem first.

Sources: The Telegraph (Kolkata, India)

Reblog this post [with Zemanta]
Categories
Ailmemts & Remedies

Alcoholism

[amazon_link asins=’0553274872,1578265657,B00M5PAMN8,0553380141,1455554588,B016JP45PU,1937856135,1476792968,B01HBVU1JA’ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’5de4f2c6-b935-11e7-bf7a-3739a7c15c91′]

Abstinence is the best course for those who can’t control their drinking. Although not a cure, various supplements may help heavy drinkers overcome their craving for alcohol, support them during the taxing withdrawal process, and set them on the road to recovery.

Symptoms
Constantly seeking opportunities to drink; being unable to cut intake; putting alcohol before family, friends, and work.
Needing more and more alcohol to achieve the same effect.
Reacting indignantly to criticism of drinking; adamantly denying the problem.
Experiencing withdrawal signs (tremors, seizures, and hallucinations) if drinking is stopped.

When to Call Your Doctor
If you drink before breakfast.
If binges last 48 hours or more.
If you have blackouts or falls.
If you routinely turn to alcohol to relieve stress or pain.
If your drinking is ruining your personal relationships.
Reminder: If you have a medical condition, talk to your doctor

What It Is
An intense physical and psychological dependence on alcohol is the hallmark of alcoholism — which many consider a chronic disease, like diabetes or hypertension. Though alcohol appears to protect the heart when taken in moderation, excessive drinking over time can damage the liver, pancreas, intestine, brain, and other organs. It can also cause malnutrition when empty alcohol calories replace a nourishing diet.

What Causes It
Drinking has a social component: It makes most people feel talkative and relaxed. Precisely why some people pursue alcohol to excess remains a mystery; psychosocial factors play a role, but there seems to be a strong genetic component as well. Indeed, children of alcoholics are at high risk for the disease, even when raised in nondrinking households.

How Supplements Can Help
The recommended supplements, all of which can be taken together, can play several important roles in weaning problem drinkers from alcohol and helping them through the initial recovery period, which may last for weeks or even months. In addition to supplements, prescription drugs are usually needed to help weather withdrawal symptoms.
Most heavy drinkers are deficient in important nutrients, including B vitamins, vitamin C, and amino acids (protein), because they do not consume a healthy diet and because alcohol has toxic effects; it may be beneficial to continue therapy for several months, or longer, to help restore depleted nutrients. Vitamin C can help to strengthen the body during this difficult period, clearing alcohol from the tissues and reducing mild withdrawal symptoms; it is most useful when taken with vitamin E. The B-complex vitamins, the amino acid glutamine, and extracts from the kudzu vine appear to reduce the craving. Researchers at the University of North Carolina noted that in monkeys (considered good stand-ins for humans), kudzu cut alcohol intake by about 25%. Harvard scientists found that in a strain of golden Syrian hamsters that preferred alcohol to water (and could drink the equivalent of a case of wine a day), kudzu cut consumption in half.

Be sure to take extra thiamin to help ease withdrawal symptoms.

The herb milk thistle, the amino acid NAC (N-acetylcysteine), and phosphatidylcholine (500 mg three times a day) strengthen the liver, helping it rid the body of toxins. Studies confirm the protective effects of the herb milk thistle. When people with cirrhosis (liver scarring), a dangerous late-stage complication of alcoholism, took milk thistle, 58% were alive after four years, compared with only 39% who did not use the herb.

The mineral chromium should be taken to prevent fatigue caused by low blood sugar (hypoglycemia), a common problem in alcoholics. Evening primrose oil provides the fatty acid GLA (gamma-linolenic acid); this substance stimulates production of a brain chemical called prostaglandin E, which works to prevent withdrawal symptoms such as seizures and depression. It also assists in protecting the liver and nervous system. The herb kava and the amino acid GABA (gamma-aminobutyric acid) are both natural sedatives that can aid sleep.

What Else You Can Do
Join a support group, such as Alcoholics Anonymous (AA).
Try acupuncture. It may reduce the craving for alcohol.


Supplement Recommendations
Vitamin C/Vitamin E
Vitamin B Complex
Amino Acids
Kudzu
Milk Thistle
Chromium
Evening Primrose Oil
Kava

Vitamin C/Vitamin E
Dosage: 1,000 mg vitamin C 3 times a day; 400 IU vitamin E daily.
Comments: Vitamin C helps boost the effects of vitamin E.

Vitamin B Complex
Dosage: 1 pill, plus extra 100 mg thiamin, each morning with food.
Comments: Look for a B-50 complex with 50 mcg vitamin B12 and biotin; 400 mcg folic acid; and 50 mg all other B vitamins.

Amino Acids

Dosage: Mixed amino acid complex (see label for dosage amount), plus L-glutamine (500 mg twice a day), NAC (500 mg twice a day), and GABA (750 mg twice a day).
Comments: For best absorption, take on an empty stomach.

Kudzu
Dosage: 150 mg 3 times a day.
Comments: Standardized to contain at least 0.95% daidzen.

Milk Thistle
Dosage: 250 mg 3 times a day between meals.
Comments: Standardized to contain at least 70% silymarin.

Chromium
Dosage: 200 mcg twice a day.
Comments: Take with food or a full glass of water.

Evening Primrose Oil
Dosage: 1,000 mg 3 times a day.
Comments: Can substitute 1,000 mg borage oil once a day.

Kava
Dosage: 250 mg 3 times a day.
Comments: Standardized to contain at least 30% kavalactones.

Source:Your Guide to Vitamins, Minerals, and Herbs (Reader’s Digest)