Categories
News on Health & Science

Hear, hear

[amazon_link asins=’B01BEENYCQ,B00AIAKWAK,B001FNW09U,B003PWSYGM,B018F4FS72,B004H4EBHI,B003687UPQ,B01H99L6MA,B015HJHE6Q’ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’ed3dca6a-0494-11e7-bbbc-89e992246a08′]

The ears are one of our five sense organs but most of us take very little care of them. And a lot of us are gradually losing our hearing owing to neglect, misuse and wilful damage. The inability to hear properly and the consequent misinterpretation of what is heard can lead to misunderstandings with friends and social isolation. It can also be dangerous, as motor horns, bells, sirens and even warnings shouted may be missed.

click to see..>....(1)..…....(2).…….(3).……..(4).…....(5).

Some babies are born deaf as an isolated defect or part of a complex plethora of congenital defects and syndromes. Sometimes the mother contracts measles, mumps or chicken pox during the first few months of pregnancy and deafness occurs in the baby as a result.

Hearing should be checked soon after birth. Some babies can hear, but develop post-lingual (after speech develops) hearing loss. Minor hearing loss can begin by age 20, with difficulty in hearing whispers and soft speech. By the time one reaches 65, 30 per cent have significant hearing loss while 50 per cent are quite deaf by the time they cross 75. Age related gradual degenerative deafness is called presbycusis.

The ear consists of the outer ear, middle ear and inner ear. Sound waves enter through the outer ear and cause vibrations at the eardrum. Three small bones of the middle ear amplify these vibrations as they pass to the inner ear, which contains a fluid-filled snail shaped structure called cochlea. Sound waves make the tiny hairs attached to the nerve cells in the cochlea move in different directions. This transforms the sound waves into electrical signals that are transmitted to the brain.

Continuous exposure to loud sound can damage the fine hair on the nerve cells, leading to progressive loss of hearing. This can be occupational in people who work with loud machinery. It is becoming common in teenagers who use “in ear” earphones to listen to loud music prolonged periods. Even soft piano music should not be listened to for more than two hours at a stretch.

Difficulty in hearing can also occur because of the external ear canal being blocked with wax. This can also lead to severe ear ache. It can be tackled with wax dissolving eardrops. A physician can clean it out. Ear buds tend to push hard wax further inwards, blocking the canal further. Pins and other sharp objects should never be inserted into the ear as they can damage the eardrum.

The middle ear is prone to viral and bacterial infections. Fluid and pus can collect, causing temporary hearing loss. Viral infections are unavoidable but immunisation is available against H. Influenzae and pneumococcus, the two common bacteria that cause ear infections in childhood. These injections are not part of the free national immunisation schedule; they are classified as “optional” vaccines and have to be paid for.

If left untreated, middle ear infections can result in hearing loss. The infection can spread outwards damaging the eardrum or inwards causing brain fever and meningitis. It can also damage the nerves conducting sounds to the brain.

Childhood infections such as measles, mumps and chicken pox could cause deafness as a complication. This too is preventable with immunisation. Vaccinations for all these diseases should be completed by the age of two.

Hearing loss can develop because of a defect either in the conduction pathways or in the nerve cells. It can also be a side effect of medication such as chloroquine, quinine and aspirin as well as antibiotics like gentamicin and kanamycin.

A sudden blow to the head, or a poke with a sharp object can also rupture the eardrum. Sudden loud noises can have the same effect. In war zones, there are “epidemics” of deafness where large numbers of the population cannot hear. Children are particularly vulnerable.

Once hearing loss has set in it should be evaluated professionally to assess the severity, whether one or both ears are affected and if it is reversible and curable.

Small holes in the eardrum can heal spontaneously or with medication. Larger holes require surgical repair, with skin grafts. In permanent hearing loss, a hearing aid should be considered, particularly in older individuals. Hearing aids vary in price, size and usability. The individual has to be fitted with the aid that suits him best. Cochlear implant surgery is also an effective but expensive solution.

Tips to preserve hearing:

• If occupational exposure to loud noise is inevitable, use ear mufflers.

• Turn TV and music volumes down.

• Do not place foreign objects in the ear.

• Children should be immunised against measles, mumps, German measles, chicken pox, H. influenza and pneumococcus.

• Women should complete their immunisation schedule before marriage.

Source: The Telegraph ( kolkata, India)

Enhanced by Zemanta
Categories
Ailmemts & Remedies

Deafness and Hearing Problems

Definition:
Deafness is a condition wherein the ability to detect certain frequencies of sound is completely or partially impaired. When applied to humans, the term hearing impaired is rejected by the Deaf Culture movement, where the terms deaf and hard-of-hearing are preferred.

click & see

Hearing sensitivity is indicated by the quietest sound that an animal can detect, called the hearing threshold. In the case of humans and some animals, this threshold can be accurately measured by a behavioral audiogram. A record is made of the quietest sound that consistently prompts a response from the listener. The test is carried out for sounds of different frequencies. There are also electro-physiological tests that can be performed without requiring a behavioral response.

Normal hearing thresholds within any given species are not the same for all frequencies. If different frequencies of sound are played at the same amplitude, some will be perceived as loud, and others quiet or even completely inaudible. Generally, if the gain or amplitude is increased, a sound is more likely to be perceived. Ordinarily, when animals use sound to communicate, hearing in that type of animal is most sensitive for the frequencies produced by calls, or in the case of humans, speech. All levels of the auditory system contribute to this sensitivity toward certain frequencies, from the outer ear’s physical characteristics to the nerves and tracts that convey the nerve impulses of the auditory portion of the brain.

A hearing loss exists when an animal has diminished sensitivity to the sounds normally heard by its species. In humans, the term hearing impairment is usually reserved for people who have relative insensitivity to sound in the speech frequencies. The severity of a hearing loss is categorized according to the increase in volume that must be made above the usual level before the listener can detect it. In profound deafness, even the loudest sounds that can be produced by an audiometer (an instrument used to measure hearing) may not be detected.

Another aspect to hearing involves the perceived clarity of a sound rather than its amplitude. In humans, that aspect is usually measured by tests of speech perception. These tests measure one’s ability to understand speech, not to merely detect sound. There are very rare types of hearing impairments which affect speech understanding alone.

Causes:
The following are some of the major causes of hearing loss:-

*Age:-
Presbycusis, the progressive loss of ability to hear high frequencies with increasing age, begins in early adulthood, but does not usually interfere with ability to understand conversation until much later. Although genetically variable it is a normal concomitant of aging and is distinct from hearing losses caused by noise exposure, toxins or disease agents.

*Long-term exposure to environmental noise:-
Populations of people living near airports or freeways are exposed to levels of noise typically in the 65 to 75 dB(A) range. If lifestyles include significant outdoor or open window conditions, these exposures over time can degrade hearing. The U.S. EPA and various states have set noise standards to protect people from these adverse health risks. The EPA has identified the level of 70 dB(A) for 24 hour exposure as the level necessary to protect the public from hearing loss and other disruptive effects from noise, such as sleep disturbance, stress-related problems, learning detriment, etc. (EPA, 1974).

Noise-induced hearing loss (NIHL) typically is centered at 3000, 4000, or 6000 Hz. As noise damage progresses, damage starts affecting lower and higher frequencies. On an audiogram, the resulting configuration has a distinctive notch, sometimes referred to as a “noise notch.” As aging and other effects contribute to higher frequency loss (6–8 kHz on an audiogram), this notch may be obscured and entirely disappear.

Louder sounds cause damage in a shorter period of time. Estimation of a “safe” duration of exposure is possible using an exchange rate of 3 dB. As 3 dB represents a doubling of intensity of sound, duration of exposure must be cut in half to maintain the same energy dose. For example, the “safe” daily exposure amount at 85 dB A, known as an exposure action value, is 8 hours, while the “safe” exposure at 91 dB(A) is only 2 hours (National Institute for Occupational Safety and Health, 1998). Note that for some people, sound may be damaging at even lower levels than 85 dB A. Exposures to other ototoxins (such as pesticides, some medications including chemotherapy, solvents, etc.) can lead to greater susceptibility to noise damage, as well as causing their own damage. This is called a synergistic interaction.

Some American health and safety agencies (such as OSHA-Occupational Safety and Health Administration and MSHA-Mine Safety and Health Administration), use an exchange rate of 5 dB. While this exchange rate is simpler to use, it drastically underestimates the damage caused by very loud noise. For example, at 115 dB, a 3 dB exchange rate would limit exposure to about half a minute; the 5 dB exchange rate allows 15 minutes.

While OSHA, MSHA, and FRA provide guidelines to limit noise exposure on the job, there is essentially no regulation or enforcement of sound output for recreational sources and environments, such as sports arenas, musical venues, bars, etc. This lack of regulation resulted from the defunding of ONAC, the EPA’s Office of Noise Abatement and Control, in the early 1980s. ONAC was established in 1972 by the Noise Control Act and charged with working to assess and reduce environmental noise. Although the Office still exists, it has not been assigned new funding.

Many people are unaware of the presence of environmental sound at damaging levels, or of the level at which sound becomes harmful. Common sources of damaging noise levels include car stereos, children’s toys, transportation, crowds, lawn and maintenance equipment, power tools, gun use, and even hair dryers. Noise damage is cumulative; all sources of damage must be considered to assess risk. If one is exposed to loud sound (including music) at high levels or for extended durations (85 dB A or greater), then hearing impairment will occur. Sound levels increase with proximity; as the source is brought closer to the ear, the sound level increases.

*Genetic:-
Hearing loss can be inherited. Both dominant genes and recessive genes exist which can cause mild to profound impairment. If a family has a dominant gene for deafness it will persist across generations because it will manifest itself in the offspring even if it is inherited from only one parent. If a family had genetic hearing impairment caused by a recessive gene it will not always be apparent as it will have to be passed onto offspring from both parents. Dominant and recessive hearing impairment can be syndromic or nonsyndromic. Recent gene mapping has identified dozens of nonsyndromic dominant (DFNA#) and recessive (DFNB#) forms of deafness.

#The first gene mapped for non-syndromic deafness, DFNA1, involves a splice site mutation in the formin related homolog diaphanous 1 (DIAPH1). A single base change in a large Costa Rican family was identified as causative in a rare form of low frequency onset progressive hearing loss with autosomal dominant inheritance exhibiting variable age of onset and complete penetrance by age 30.

#The most common type of congenital hearing impairment in developed countries is DFNB1, also known as Connexin 26 deafness or GJB2-related deafness.

#The most common dominant syndromic forms of hearing impairment include Stickler syndrome and Waardenburg syndrome.

#The most common recessive syndromic forms of hearing impairment are Pendred syndrome, Large vestibular aqueduct syndrome and Usher syndrome.

#The congenital defect microtia can cause full or partial deafness depending upon the severity of the deformity and whether or not certain parts of the inner or middle ear are affected.

#Mutations in PTPRQ Are a Cause of Autosomal-Recessive Nonsyndromic Hearing Impairment

*Disease or illness:-
#Measles may result in auditory nerve damage

#Meningitis may damage the auditory nerve or the cochlea

#Autoimmune disease has only recently been recognized as a potential cause for cochlear damage.
#Although probably rare, it is possible for autoimmune processes to target the cochlea specifically, without symptoms affecting other organs. Wegener’s granulomatosis is one of the autoimmune conditions that may precipitate hearing loss.

#Mumps (Epidemic parotitis) may result in profound sensorineural hearing loss (90 dB or more), unilateral (one ear) or bilateral (both ears).

#Presbycusis is a progressive hearing impairment accompanying age, typically affecting sensitivity to higher frequencies (above about 2 kHz).

#Adenoids that do not disappear by adolescence may continue to grow and may obstruct the Eustachian tube, causing conductive hearing impairment and nasal infections that can spread to the middle ear.

#AIDS and ARC patients frequently experience auditory system anomalies.

#HIV (and subsequent opportunistic infections) may directly affect the cochlea and central auditory system.

#Chlamydia may cause hearing loss in newborns to whom the disease has been passed at birth.

#Fetal alcohol syndrome is reported to cause hearing loss in up to 64% of infants born to alcoholic mothers, from the ototoxic effect on the developing fetus plus malnutrition during pregnancy from the excess alcohol intake.

#Premature birth results in sensorineural hearing loss approximately 5% of the time.

#Syphilis is commonly transmitted from pregnant women to their fetuses, and about a third of the infected children will eventually become deaf.

#Otosclerosis is a hardening of the stapes (or stirrup) in the middle ear and causes conductive hearing loss.

#Superior canal dehiscence, a gap in the bone cover above the inner ear, can lead to low-frequency conductive hearing loss, autophony and vertigo.

*Medications:
Some medications cause irreversible damage to the ear, and are limited in their use for this reason. The most important group is the aminoglycosides (main member gentamicin) and platinum based chemotherapeutics such as cisplatin.

Various other medications may reversibly affect hearing. This includes some diuretics, aspirin and NSAIDs, and macrolide antibiotics.

The 1995 Miss America Heather Whitestone lost her hearing after receiving strong antibiotics for haemophilus influenzae.[citation needed] Extremely heavy hydrocodone (Vicodin or Lorcet) abuse is known to cause hearing impairment. Commentators have speculated that radio talk show host Rush Limbaugh’s hearing loss was at least in part caused by his admitted addiction to narcotic pain killers, in particular Vicodin and OxyContin.

*Exposure to ototoxic chemicals:-
In addition to medications, hearing loss can also result from specific drugs; metals, such as lead; solvents, such as toluene (found in crude oil, gasoline[6] and automobile exhaust, for example); and asphyxiants. Combined with noise, these ototoxic chemicals have an additive effect on a person’s hearing loss.Hearing loss due to chemicals starts in the high frequency range and is irreversible. It damages the cochlea with lesions and degrades central portions of the auditory system. For some ototoxic chemical exposures, particularly styrene, the risk of hearing loss can be higher than being exposed to noise alone. Controlling noise and using hearing protectors are insufficient for preventing hearing loss from these chemicals. However, taking antioxidants helps prevent ototoxic hearing loss, at least to a degree. The following list provides an accurate catalogue of ototoxic chemicals:-

#Drugs
antimalarial, antibiotics, anti-inflammatory (non-steroidal), antineoplastic, diuretics

#Solvents
toluene, styrene, xylene, n-hexane, ethyl benzene, white spirits/Stoddard, carbon disulfide, fuels, perchloroethylene, trichloroethylene, p-xylene

#Asphyxiants
carbon monoxide, hydrogen cyanide

#Metals
lead, mercury, organotins (trimethyltin)

#Pesticides/Herbicides
paraquat, organophosphates

#Physical trauma
There can be damage either to the ear itself or to the brain centers that process the aural information conveyed by the ears.

#People who sustain head injury are especially vulnerable to hearing loss or tinnitus, either temporary or permanent.

#Exposure to very loud noise (90 dB or more, such as jet engines at close range) can cause progressive hearing loss. Exposure to a single event of extremely loud noise (such as explosions) can also cause temporary or permanent hearing loss. A typical source of acoustic trauma is an excessively loud music concert. I King Jordan lost his hearing after suffering a skull fracture as a result of a motorcycle accident at age 21

Diagnosis:
The diagnosis starts with verifying the medical and the family histories of the person. Ear examination is done to assess the hearing and the balancing ability of the person.

The following tests may be required to confirm the diagnosis and to find the cause:

Audiogram: The person sits in a sound proof room and wears a headphone attached to a machine. Different sounds of varying intensity or loudness are sent through the headphone and the person is asked to tell whether he hears the sound or not. Each ear is tested separately. An audiogram helps to assess any hearing loss.

Electrocochleography: This test measures electrical activity in the cochlea and in the nerves that take sensations from the ear to the brain. This is done by passing a thin needle into the ear that records the activity and sends it to an attached computer. In people who have SHL, the activity will be abnormal because of damage.

Caloric Testing: It is done to assess the functioning of the vestibular part of the inner ear, which maintains the body balance. The person is asked to sit in a chair. Cold and hot water is poured into the ear alternately and the associated involuntary eye movements are checked.

Computed Tomography Scan or Magnetic Resonance Imaging: Multiple images of the affected ear are taken and then they are assembled by a computer to generate a clear image of the internal body parts. These tests help to assess any damage in the inner ear. Also, any nerve tumor, such as Acoustic Neuroma, can be diagnosed.

Blood Tests such as fluorescent treponemal antibody absorption may be required to check for Syphili. Antinuclear antibodies may be checked to detect any autoimmune disorders.

Treatment:
The treatment of hearing loss depends on its cause. For example:

•ear wax can be removed,
•ear infection can be treated with medications,
•medications that are toxic to the ear can be avoided and;
•occasionally surgical procedures are necessary.

Gene therapy:-
A 2005 study achieved successful regrowth of cochlea cells in guinea pigs.[13] It is important to note, however, that the regrowth of cochlear hair cells does not imply the restoration of hearing sensitivity as the sensory cells may or may not make connections with neurons that carry the signals from hair cells to the brain. A 2008 study has shown that gene therapy targeting Atoh1 can cause hair cell growth and attract neuronal processes in embryonic mice. It is hoped that a similar treatment will one day ameliorate hearing loss in humans.

Assistive techniques and devices for hearing impairment:-
Many hearing impaired individuals use assistive devices in their daily lives:

#Individuals can communicate by telephone using Telecommunications Device for the Deaf (TDD). These devices look like typewriters or word processors and transmit typed text over regular telephone lines.Other names in common use are textphone and minicom.

#There are several new Telecommunications Relay Service technologies including IP Relay and captioned telephone technologies.

#Mobile textphone devices came onto the market as of 2004, allowing simultaneous two way text communication.

#Videophones and similar video technologies can be used for distance communication using sign language. Video conferencing technologies permit signed conversations as well as permitting a sign language-English interpreter to voice and sign conversations between a hearing impaired person and that person’s hearing party, negating the use of a TTY device or computer keyboard.

#Video Relay Service and Video Remote Interpreting services also use a third-party telecommunication service to allow a deaf or hard-of-hearing person to communicate quickly and conveniently with a hearing person, through a sign language interpreter.

#In the U.S., the UK, the Netherlands and many other western countries there are Telecommunications Relay Services so that a hearing impaired person can communicate over the phone with a hearing person via a human translator. Wireless, internet and mobile phone/SMS text messaging are beginning to take over the role of the TDD.

#Phone captioning is a service in which a hearing person’s speech is captioned by a third party, enabling a hearing impaired person to conduct a conversation with a hearing person over the phone.

#Hearing dogs are a specific type of assistance dog specifically selected and trained to assist the deaf and hearing impaired by alerting their handler to important sounds, such as doorbells, smoke alarms, ringing telephones, or alarm clocks.

#Other assistive devices include those that use flashing lights to signal events such as a ringing telephone, a doorbell, or a fire alarm.

#The advent of the Internet’s World Wide Web and closed captioning has given the hearing impaired unprecedented access to information. Electronic mail and online chat have reduced the need for deaf and hard-of-hearing people to use a third-party Telecommunications Relay Service in order to communicate with the hearing and other hearing impaired people;

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
http://www.bbc.co.uk/health/physical_health/conditions/deafness1.shtml
http://en.wikipedia.org/wiki/Hearing_impairment
http://www.medicinenet.com/deafness/article.htm

http://www.assiutknol.com/hearing-loss-and-deafness

http://healthscribes.com/disease/Hearing+Loss,+Sudden

http://engagingtech.org/csdmovies/wp-content/uploads/2010/10/international_symbol_for_deafness.jpg

Enhanced by Zemanta
Categories
Positive thinking

Perceiving the Infinite

[amazon_link asins=’B00B2A4RC4′ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’1009abbe-6fd0-11e8-b02c-ff808911407a’]

Using Your Psychic Gifts ….
Psychic experiences are a natural part of our everyday lives. People often have difficulty accepting that they have been blessed with psychic abilities because without a frame of reference it is almost impossible to identify an extrasensory experience and to distinguish psychic sights, sounds, and sensations from the projects of the unconscious mind. To some extent, every human being on the planet is clairvoyant, clairaudient, and clairsentient, although most people discover that they are naturally adept at one more than the others. When you trust in and take steps to hone your innate clairvoyance, clairaudience, and clairsentience, you will enter a new realm of being in which the universe, your higher self, and your spirit guides lovingly conduct you toward a more aware existence.

Clairvoyance, or clear seeing, is the ability to see with the mind’s eye. An individual who has honed their clairvoyant abilities may be able to see in their mind’s eye events in a remote location; to witness incidents that have yet to occur; or to perceive shapes, colors, and other images that are physically invisible. Clairaudience, which means clear listening, is the ability to hear sounds not physically audible. A person with the gift of clairaudience perceives psychic information as auditory resonance and may hear angelic voices, music, or other sounds. A clairsentient, or clear feeling, individual is able to sense physical, emotional, and spiritual energy in the form of seemingly unearthly scents, touches, and movements. Each of these psychic abilities can manifest themselves within us voluntarily or involuntarily. It is natural for us to have these abilities; we need only practice.

Developing your psychic talents is a matter of releasing your fear of seeing, hearing, or feeling inexplicable or disquieting stimulus. Before you attempt to consciously tap into your gifts, ground yourself to anchor your mind in the present to disconnect from any involuntary psychic experiences you may be having. Concentrate on your intuitive responses to the world around you and notice any sights, sounds, or feelings that enter your mind. If you trust your perceptions, you’ll discover that each psychic impression you receive will be in some way relevant to your experience—even when that relevance may not be immediately recognizable.

Source :Daily Om

Categories
Diagnonistic Test

Venous Ultrasound of Upper & Lower Extremity Arterial Doppler Studies

[amazon_link asins=’0974769487,1853159484,9873343598,B00IZ2F2Q2,3319018116,0071668071,0071485422,B01K16KTZ8,8847039363′ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’96ad7af1-4549-11e7-95e2-79d9e0a3c5d4′]

Introduction:
The Arterial Doppler ultrasound uses sound waves at a frequency that is higher than humans are able to hear to produce images on a monitor for the purpose of evaluating the arterial blood flow to the upper extremities (arms) and lower extremities (legs).

CLICK & SEE

This type of ultrasound shows if there is a blockage in arm or  leg vein. Such blockages are usually caused by blood clots, which can be dangerous and even lifethreatening if they break loose and travel through the blood to the lungs. If you have pain or swelling in one leg, your doctor may order an ultrasound to determine whether your symptoms are caused by a blockage.

It is used to evaluate:
*Numbness and tingling sensations in the hands, arms, feet and legs
*Sensation of fatigue and heaviness in the arms and legs
*To investigate the possibility of thoracic outlet syndrome.

Procedure:

For the Arterial Doppler exam a blood pressure cuff is applied to each of the arms and legs and a pressure is recorded for each extremity cuff. The pulse is also taken and recorded for each of the extremities. The patient may then be exercised and blood pressure recordings repeated or an ultrasound may be performed to assess the arteries for the location and the amount of narrowing.

When evaluating for thoracic outlet syndrome of the upper extremities, the patient will be asked to perform a series of arm movements while recordings are documented.

The Arterial Doppler studies take approximately 60-90 minutes.

After squirting some clear jelly onto the inside of one of your arms or thighs to help the ultrasound sensor slide around easily, a technician or doctor places the sensor against your skin. Once it’s in place, an image appears on a video screen, and the technician or doctor moves the sensor up and down along your leg – from the groin to the calf – to view the veins from different angles. The examiner presses the sensor into your skin firmly every few inches to see if the veins change shape under pressure. He or she then checks your other leg in the same way. As the machine measures the blood flowing through a vein, it makes a swishing noise in time with the rhythm of your heartbeat. This test usually takes 15-30 minutes.Most people don’t feel any discomfort, but if your leg was swollen and sensitive to the touch before the test, the pressure of the sensor might cause some tenderness.

How do You prepare for the test? No preparation is necessary.

Risk Factors: There are no risks
How long is it before the result of the test is known?
A radiologist reviews a videotape of your ultrasound and checks for signs of blockages in the veins.Your doctor should receive a report within a few hours to a day.

Resources:
https://www.health.harvard.edu/fhg/diagnostics/venous-ultrasound-of-the-legs.shtml
http://www.advanceddiagnosticimagingpc.com/vascular/extremity.htm

Enhanced by Zemanta
Categories
Diagnonistic Test

Echocardiogram

[amazon_link asins=’159103017X,B01ID78YMW,B00GR8A2VQ,B078R1PLJR,B015BJPZIQ,B0794BV4RN,B01GIBWW82,3319118757,1444163183′ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’10f9c2a9-0501-11e8-80a2-e95cf847122f’]

Definition
An echocardiogram uses sound waves to produce images of your heart. This common test allows your doctor to see how your heart is beating and pumping blood. Your doctor can use the images from an echocardiogram to identify various abnormalities in the heart muscle and valves.

CLICK TO SEE

It determines the size of your heart, and assess how well it is functioning. The test can estimate how forcefully your heart is pumping blood, and can spot areas of the heart wall that have been injured by a previous heart attack or some other cause.

Depending on what information your doctor needs, you may have one of several types of echocardiograms. Each type of echocardiogram has very few risks involved.

Why it’s done
Your doctor may suggest an echocardiogram if he or she suspects problems with the valves or chambers of your heart or your heart’s ability to pump. An echocardiogram can also be used to detect congenital heart defects in unborn babies.

Depending on what information your doctor needs, you may have one of the following kinds of echocardiograms:

*Transthoracic echocardiogram. This is a standard, noninvasive echocardiogram. A technician (sonographer) spreads gel on your chest and then presses a device known as a transducer firmly against your skin, aiming an ultrasound beam through your chest to your heart. The transducer records the sound wave echoes your heart produces. A computer converts the echoes into moving images on a monitor. If your lungs or ribs obscure the view, a small amount of intravenous dye may be used to improve the images.

*Transesophageal echocardiogram. If it’s difficult to get a clear picture of your heart with a standard echocardiogram, your doctor may recommend a transesophageal echocardiogram. In this procedure, a flexible tube containing a transducer is guided down your throat and into your esophagus, which connects your mouth to your stomach. From there, the transducer can obtain more detailed images of your heart.

*Doppler echocardiogram. When sound waves bounce off blood cells moving through your heart and blood vessels, they change pitch. These changes (Doppler signals) can help your doctor measure the speed and direction of the blood flow in your heart. Doppler techniques are used in most transthoracic and transesophageal echocardiograms.

*Stress echocardiogram. Some heart problems — particularly those involving the coronary arteries that feed your heart muscle — occur only during physical activity. For a stress echocardiogram, ultrasound images of your heart are taken before and immediately after walking on a treadmill or riding a stationary bike. If you’re unable to exercise, you may get an injection of a medication to make your heart work as hard as if you were exercising.

Risk Factors:
There are minimal risks associated with a standard transthoracic echocardiogram. You may feel some discomfort similar to pulling off an adhesive bandage when the technician removes the electrodes placed on your chest during the procedure.

If you have a transesophageal echocardiogram, your throat may be sore for a few hours afterward. Rarely, the tube may scrape the inside of your throat. Your oxygen level will be monitored during the exam to check for any breathing problems caused by the sedation medication.

During a stress echocardiogram, exercise or medication — not the echocardiogram itself — may temporarily cause an irregular heartbeat. Serious complications, such as a heart attack, are rare.

How do you prepare for the test?
No special preparations are necessary for a standard transthoracic echocardiogram. Your doctor will ask you not to eat for a few hours beforehand if you’re having a transesophageal or stress echocardiogram. If you’ll be walking on a treadmill during a stress echocardiogram, wear comfortable shoes. If you’re having a transesophageal echocardiogram, you won’t be able to drive afterward because of the sedating medication you’ll receive. Be sure to make arrangements to get home before you have your test.

What happens when the test is performed?

During the procedure
An echocardiogram can be done in the doctor’s office or a hospital. After undressing from the waist up, you’ll lie on an examining table or bed. The technician will attach sticky patches (electrodes) to your body to help detect and conduct the electrical currents of your heart.

If you’ll have a transesophageal echocardiogram, your throat will be numbed with a numbing spray or gel. You’ll likely be given a sedative to help you relax.

During the echocardiogram, the technician will dim the lights to better view the image on the monitor. You may hear a pulsing “whoosh” sound, which is the machine recording the blood flowing through your heart.

Most echocardiograms take less than an hour, but the timing may vary depending on your condition. During a transthoracic echocardiogram, you may be asked to breathe in a certain way or to roll onto your left side. Sometimes the transducer must be held very firmly against your chest. This can be uncomfortable – but it helps the technician produce the best images of your heart.

After the procedure
If your echocardiogram is normal, no further testing may be needed. If the results are concerning, you may be referred to a heart specialist (cardiologist) for further assessment. Treatment depends on what’s found during the exam and your specific signs and symptoms. You may need a repeat echocardiogram in several months or other diagnostic tests, such as a cardiac computerized tomography (CT) scan or coronary angiogram.

How long is it before the result of the test is known?
If a doctor does the test, you might get some results immediately. If a technician performs the test, he or she records the echocardiogram on a videotape for a cardiologist to review later on. In this case, you’ll probably receive results in several days.

Results:
Your doctor will look for healthy heart valves and chambers, as well as normal heartbeats. Information from the echocardiogram can reveal many aspects of your heart health, including:

*Heart size. Weakened or damaged heart valves, high blood pressure or other diseases can cause the chambers of your heart to enlarge. Your doctor can use an echocardiogram to evaluate the need for treatment or monitor treatment effectiveness.

*Pumping strength. An echocardiogram can help your doctor determine your heart’s pumping strength. Specific measurements may include the percentage of blood that’s pumped out of a filled ventricle with each heartbeat (ejection fraction) or the volume of blood pumped by the heart in one minute (cardiac output). If your heart isn’t pumping enough blood to meet your body’s needs, heart failure may be a concern.

*Damage to the heart muscle. During an echocardiogram, your doctor can determine whether all parts of the heart wall are contributing equally to your heart’s pumping activity. Parts that move weakly may have been damaged during a heart attack or be receiving too little oxygen. This may indicate coronary artery disease or various other conditions.

*Valve problems. An echocardiogram shows how your heart valves move as your heart beats. Your doctor can determine if the valves open wide enough for adequate blood flow or close fully to prevent blood leakage. Abnormal blood flow patterns and conditions such as aortic valve stenosis — when the heart’s aortic valve is narrowed — can be detected as well.

*Heart defects. Many heart defects can be detected with an echocardiogram, including problems with the heart chambers, abnormal connections between the heart and major blood vessels, and complex heart defects that are present at birth. Echocardiograms can even be used to monitor a baby’s heart development before birth.

Resources:
https://www.health.harvard.edu/fhg/diagnostics/echocardiogram.shtml
http://www.mayoclinic.com/health/echocardiogram/MY00095

http://www.sads.org.uk/cardiac_tests.htm

Enhanced by Zemanta
css.php