Categories
Suppliments our body needs

Vitamin D

[amazon_link asins=’B00GB85JR4,B00JGCBGZQ,B004XLRTUQ,B000A0LE6O,B0032BH76O,B0050MYHBQ,B06XP3B13K,B004GJYTF8,B01GGFDVUI’ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’25941b95-184a-11e8-9a4f-ab99030b2e2f’]

Definition:Vitamin D is a fat-soluble steroid hormone precursor that contributes to the maintenance of normal levels of calcium and phosphorus in the bloodstream.
Strictly speaking, it is not a vitamin since human skin can manufacture it, but it is referred to as one for historical reasons.It is often known as calciferol.
Vitamin D is a group of fat-soluble prohormones, the two major forms of which are vitamin D2 (or ergocalciferol) and vitamin D3 (or cholecalciferol). The term vitamin D also refers to metabolites and other analogues of these substances. Vitamin D3 is produced in skin exposed to sunlight, specifically ultraviolet B radiation.

Vitamin D plays an important role in the maintenance of organ systems.

Vitamin D regulates the calcium and phosphorus levels in the blood by promoting their absorption from food in the intestines, and by promoting re-absorption of calcium in the kidneys, which enables normal mineralization of bone and prevents hypocalcemic tetany. It is also needed for bone growth and bone remodeling by osteoblasts and osteoclasts.

Absent vitamin K or with drugs (particularly blood thinners) which interfere with Vitamin K metabolism, Vitamin D can promote soft tissue calcification.

It inhibits parathyroid hormone secretion from the parathyroid gland.
Vitamin D affects the immune system by promoting phagocytosis, anti-tumor activity, and immunomodulatory functions.

Vitamin D deficiency can result from inadequate intake coupled with inadequate sunlight exposure, disorders that limit its absorption, conditions that impair conversion of vitamin D into active metabolites, such as liver or kidney disorders, or, rarely, by a number of hereditary disorders.Deficiency results in impaired bone mineralization, and leads to bone softening diseases, rickets in children and osteomalacia in adults, and possibly contributes to osteoporosis.

Vitamin D regulates the expression of genes associated with cancers and autoimmune disease by controlling the activation of the vitamin D receptor (VDR), a type 1 nuclear receptor and DNA transcription factor. Research has indicated that vitamin D deficiency is linked to colon cancer and more recently, to breast cancer. Conflicting evidence links vitamin D deficiency to other forms of cancer.

Forms:
Several forms (vitamers) of vitamin D have been discovered. The two major forms are vitamin D2 or ergocalciferol, and vitamin D3 or cholecalciferol.

Vitamin D1: molecular compound of ergocalciferol with lumisterol, 1:1
Vitamin D2: ergocalciferol or calciferol (made from ergosterol)
Vitamin D3: cholecalciferol (made from 7-dehydrocholesterol in the skin).
Vitamin D4: 22-dihydroergocalciferol
Vitamin D5: sitocalciferol (made from 7-dehydrositosterol)
Chemically, the various forms of vitamin D are secosteroids; i.e., broken-open steroids.[8] The structural difference between vitamin D2 and vitamin D3 is in their side chains. The side chain of D2 contains a double bond between carbons 22 and 23, and a methyl group on carbon 24.

Vitamin D2 is derived from fungal and plant sources, and is not produced by the human body. Vitamin D3 is derived from animal sources and is made in the skin when 7-dehydrocholesterol reacts with UVB ultraviolet light at wavelengths between 270–300 nm, with peak synthesis occurring between 295-297 nm. These wavelengths are present in sunlight at sea level when the sun is more than 45° above the horizon, or when the UV index is greater than 3. At this solar elevation, which occurs daily within the tropics, daily during the spring and summer seasons in temperate regions, and almost never within the arctic circles, adequate amounts of vitamin D3 can be made in the skin after only ten to fifteen minutes of sun exposure at least two times per week to the face, arms, hands, or back without sunscreen. With longer exposure to UVB rays, an equilibrium is achieved in the skin, and the vitamin simply degrades as fast as it is generated.

In humans, D3 is as effective as D2 at increasing the levels of vitamin D hormone in circulation; However, in some species, such as rats, vitamin D2 is more effective than D3. Both vitamin D2 and D3 are used for human nutritional supplementation, and pharmaceutical forms include calcitriol (1alpha, 25-dihydroxycholecalciferol), doxercalciferol and calcipotriene.

CLICK & SEE THE PICTURES

Biochemistry:
Vitamin D is a prohormone, meaning that it has no hormone activity itself, but is converted to the active hormone 1,25-D through a tightly regulated synthesis mechanism. Production of vitamin D in nature always appears to require the presence of some UV light; even vitamin D in foodstuffs is ultimately derived from organisms, from mushrooms to animals, which are not able to synthesize it except through the action of sunlight at some point in the synthetic chain. For example, fish contain vitamin D only because they ultimately exist on calories from ocean algae which synthesize vitamin D in shallow waters from the action of solar UV.

Production in the skin:
The skin consists of two primary layers: the inner layer called the dermis, composed largely of connective tissue, and the outer, thinner epidermis. The epidermis consists of five strata; from outer to inner they are: the stratum corneum, stratum lucidum, stratum granulosum, stratum spinosum, and stratum basale.

Vitamin D3 is produced photochemically in the skin from 7-dehydrocholesterol. The highest concentrations of 7-dehydrocholesterol are found in the epidermal layer of skin, specifically in the stratum basale and stratum spinosum. The production of pre-vitamin D3 is therefore greatest in these two layers, whereas production in the other layers is less.

Synthesis in the skin involves UVB radiation which effectively penetrates only the epidermal layers of skin. While 7-Dehydrocholesterol absorbs UV light at wavelengths between 270–300 nm, optimal synthesis occurs in a narrow band of UVB spectra between 295-300 nm. Peak isomerization is found at 297 nm. This narrow segment is sometimes referred to as D-UV. The two most important factors that govern the generation of pre-vitamin D3 are the quantity (intensity) and quality (appropriate wavelength) of the UVB irradiation reaching the 7-dehydrocholesterol deep in the stratum basale and stratum spinosum.

A critical determinant of vitamin D3 production in the skin is the presence and concentration of melanin. Melanin functions as a light filter in the skin, and therefore the concentration of melanin in the skin is related to the ability of UVB light to penetrate the epidermal strata and reach the 7-dehydrocholesterol-containing stratum basale and stratum spinosum. Under normal circumstances, ample quantities of 7-dehydrocholesterol (about 25-50 µg/cm² of skin) are available in the stratum spinosum and stratum basale of human skin to meet the body’s vitamin D requirements, and melanin content does not alter the amount of vitamin D that can be produced. Thus, individuals with higher skin melanin content will simply require more time in sunlight to produce the same amount of vitamin D as individuals with lower melanin content. As noted below, the amount of time an individual requires to produce a given amount of Vitamin D may also depend upon the person’s distance from the equator and on the season of the year.

Mechanism of action:
Once vitamin D is produced in the skin or consumed in food, it is converted in the liver and kidney to form 1,25 dihydroxyvitamin D, (1,25(OH)2D) the physiologically active form of vitamin D (when “D” is used without a subscript it refers to either D2 or D3). Following this conversion, the hormonally active form of vitamin D is released into the circulation, and by binding to a carrier protein in the plasma, vitamin D binding protein (VDBP), it is transported to various target organs.

The hormonally active form of vitamin D mediates its biological effects by binding to the vitamin D receptor (VDR), which is principally located in the nuclei of target cells. The binding of calcitriol to the VDR allows the VDR to act as a transcription factor that modulates the gene expression of transport proteins (such as TRPV6 and calbindin), which are involved in calcium absorption in the intestine.

The Vitamin D receptor belongs to the nuclear receptor superfamily of steroid/thyroid hormone receptors, and VDR are expressed by cells in most organs, including the brain, heart, skin, gonads, prostate, and breast. VDR activation in the intestine, bone, kidney, and parathyroid gland cells leads to the maintenance of calcium and phosphorus levels in the blood (with the assistance of parathyroid hormone and calcitonin) and to the maintenance of bone content.

The VDR is known to be involved in cell proliferation, differentiation. Vitamin D also affects the immune system, and VDR are expressed in several white blood cells including monocytes and activated T and B cells.

Nutrition:
Only fish is naturally rich in vitamin D, so much vitamin D intake in the industrialized world is from fortified products including milk, soy milk and breakfast cereals or supplements.

A blood calcidiol (25-hydroxy-vitamin D) level is the accepted way to determine vitamin D nutritional status. The optimal level of serum 25-hydroxyvitamin D is 35–55 ng/mL; with some debate among medical scientists for the slightly higher value. Suplementation of 100 IU (2.5 mcg) vitamin D3 raises circulating 25(OH)D by 2.5 nmol/l (1 ng/ml).

The 2005 Dietary Guidelines for Americans recommend that older adults, people with dark skin, and those exposed to insufficient ultraviolet radiation (i.e., sunlight) consume extra vitamin D from vitamin D-fortified foods and/or supplements. Individuals in these high-risk groups should consume 25 µg (1000 IU) of vitamin D daily to maintain adequate blood concentrations of 25-hydroxyvitamin D, the biomarker for vitamin D status.

The Canadian Pediatric Society recommends 2,000 IU daily for pregnant and breastfeeding women.

In food
Season, geographic latitude, time of day, cloud cover, smog, and sunscreen affect UV ray exposure and vitamin D synthesis in the skin, and it is important for individuals with limited sun exposure to include good sources of vitamin D in their diet.

…………..
Milk and cereal grains are often fortified with vitamin D.

In some countries, foods such as milk, yogurt, margarine, oil spreads, breakfast cereal, pastries, and bread are fortified with vitamin D2 and/or vitamin D3, to minimize the risk of vitamin D deficiency. In the United States and Canada, for example, fortified milk typically provides 100 IU per glass, or one quarter of the estimated adequate intake for adults over the age of 50

CLICK  & SEE THE PICTURES

Fatty fish, such as salmon, are natural sources of vitamin D.
Fatty fish, such as salmon, are natural sources of vitamin D.Fortified foods represent the major dietary sources of vitamin D, as very few foods naturally contain significant amounts of vitamin D.

Natural sources of vitamin D include:
Fish liver oils, such as cod liver oil, 1 Tbs. (15 mL) provides 1,360 IU
Fatty fish species, such as:
Herring, 85g (3 oz) provides 1383 IU
Catfish, 85g (3 oz) provides 425 IU
Salmon, cooked, 3.5 oz provides 360 IU
Mackerel, cooked, 3.5 oz, 345 IU
Sardines, canned in oil, drained, 1.75 oz, 250 IU
Tuna, canned in oil, 3 oz, 200 IU
Eel, cooked, 3.5 oz, 200 IU
One whole egg, 20 IU
Deficiency:
Vitamin D deficiency can result from: inadequate intake coupled with inadequate sunlight exposure, disorders that limit its absorption, conditions that impair conversion of vitamin D into active metabolites, such as liver or kidney disorders, or, rarely, by a number of hereditary disorders. Deficiency results in impaired bone mineralization, and leads to bone softening diseases, rickets in children and osteomalacia in adults, and contributes to osteoporosis

Diseases caused by deficiency:
The role of diet in the development of rickets was determined by Edward Mellanby between 1918–1920. In 1921 Elmer McCollum identified an anti-rachitic substance found in certain fats could prevent rickets. Because the newly discovered substance was the fourth vitamin identified, it was called vitamin D. The 1928 Nobel Prize in Chemistry was awarded to Adolf Windaus, who discovered the steroid 7-dehydrocholesterol, the precursor of vitamin D.

Vitamin D deficiency is known to cause several bone diseases including:

Rickets, a childhood disease characterized by impeded growth, and deformity, of the long bones. The earliest sign of subclinical vitamin D deficiency is Craniotabes, abnormal softening or thinning of the skull.
Osteomalacia, a bone-thinning disorder that occurs exclusively in adults and is characterized by proximal muscle weakness and bone fragility.

Osteoporosis, a condition characterized by reduced bone mineral density and increased bone fragility.
Prior to the fortification of milk products with vitamin D, rickets was a major public health problem. In the United States, milk has been fortified with 10 micrograms (400 IU) of vitamin D per quart since the 1930s, leading to a dramatic decline in the number of rickets cases.

Zinc and Iron are often found to be poorly regulated or even deficient in Vitamin D deficiency. Vitamin D enhances the activities of Vitamin A, and Zinc reduces the toxicity of Vitamin A, while Iron reduces the toxicity of Zinc. These four are seen as part of the pathology of Alzheimer’s, Parkinson’s and some peripheral neuropathies including Restless legs syndrome

Vitamin D malnutrition may also be linked to an increased susceptibility to several chronic diseases such as high blood pressure, tuberculosis, cancer, periodontal disease, multiple sclerosis, chronic pain, depression, schizophrenia, seasonal affective disorder, peripheral artery disease and several autoimmune diseases including type 1 diabetes .

Groups at greater risk of deficiency
Vitamin D requirements increase with age, while the ability of skin to convert 7-dehydrocholesterol to pre-vitamin D3 decreases. In addition the ability of the kidneys to convert calcidiol to its active form also decreases with age, prompting the need for increased vitamin D supplementation in elderly individuals. One consensus concluded that for optimal prevention of osteoporotic fracture the blood calcidiol concentration should be higher than 30 ng/mL, which is equal to 75 nmol/L. One billion people in the world are currently Vitamin D deficient, if 75 nmol/L is used as cutoff value for insufficiency.

Because inflammation leads to the increased conversion of 25D into 1,25 D and because studies typically only measure 25D to determine deficiency, it is important to differentiate symptoms caused by insufficient 25D from those conditions which themselves cause lower levels of 25D, which presents as insufficiency.

The American Pediatric Association advises vitamin D supplementation of 200 IU/day (5?g/d) from birth onwards. (1 IU Vitamin D is the biological equivalent of 0.025 ?g cholecalciferol/ergocalciferol). The Canadian Paediatric Society recommends that pregnant or breastfeeding women consider taking 2000 IU/day, that all babies who are exclusively breastfed receive a supplement of 400 IU/day, and that babies living above 55 degrees latitude get 800 IU/day from October to April. Health Canada recommends 400IU/day (10?g/d). While infant formula is generally fortified with vitamin D, breast milk does not contain significant levels of vitamin D, and parents are usually advised to avoid exposing babies to prolonged sunlight. Therefore, infants who are exclusively breastfed are likely to require vitamin D supplementation beyond early infancy, especially at northern latitudes. Liquid “drops” of vitamin D, as a single nutrient or combined with other vitamins, are available in water based or oil-based preparations (“Baby Ddrops(R)” in North America, or “Vigantol(R) oil” in Europe). However, babies may be safely exposed to sunlight for short periods; as little as 10 minutes a day without a hat can suffice, depending on location and season. The vitamin D used for in supplements and infant formula is not distinguishable in efficacy from that produced by the body naturally. The risk of overdose is not present with natural exposure to sunlight, because the skin’s capacity to produce vitamin D is self-limiting (skin production is thought to reflect the dose of vitamin D to which our evolution optimized human biology). In contrast, care should be given to limit oral intake for infants to no more than 1000 IU (25 mcg) daily, or for adults no more than 10,000 IU (250 mcg) daily.

Obese individuals may have lower levels of the circulating form of vitamin D, probably because of reduced bioavailability, and are at higher risk of deficiency. To maintain blood levels of calcium, therapeutic vitamin D doses are sometimes administered (up to 100,000 IU or 2.5 mg daily) to patients who have had their parathyroid glands removed (most commonly renal dialysis patients who have had tertiary hyperparathyroidism, but also to patients with primary hyperparathyroidism) or with hypoparathyroidism. Patients with chronic liver disease or intestinal malabsorption disorders may also require larger doses of vitamin D (up to 40,000 IU or 1 mg (1000 micrograms) daily).

The use of sunscreen with a sun protection factor (SPF) of 8 inhibits more than 95% of vitamin D production in the skin. Recent studies showed that, following the successful “Slip-Slop-Slap” health campaign encouraging Australians to cover up when exposed to sunlight to prevent skin cancer, an increased number of Australians and New Zealanders became vitamin D deficient. Ironically, there are indications that vitamin D deficiency may lead to skin cancer. To avoid vitamin D deficiency dermatologists recommend supplementation along with sunscreen use.

The reduced pigmentation of light-skinned individuals tends to allow more sunlight to be absorbed even at higher latitudes, thereby reducing the risk of vitamin D deficiency. However, at higher latitudes (above 30°) during the winter months, the decreased angle of the sun’s rays, reduced daylight hours, protective clothing during cold weather, and fewer hours of outside activity, diminish absorption of sunlight and the production of vitamin D. Because melanin acts like a sun-block, prolonging the time required to generate vitamin D, dark-skinned individuals, in particular, may require extra vitamin D to avoid deficiency at higher latitudes. In June 2007, The Canadian Cancer Society began recommending that all adult Canadians consider taking 1000 IU of vitamin D during the fall and winter months (when typically the country’s northern latitude prevents sufficient sun-stimulated production of vitamin D). At latitudes below 30° where sunlight and day-length are more consistent, vitamin D supplementation may not be required. Individuals clad in full body coverings during all their outdoor activity, most notably women wearing burquas in daylight, are at risk of vitamin D deficiency. This poses a lifestyle-related health risk mostly for female residents of conservative Muslim nations in the Middle East, but also for strict adherents in other parts of the world.

Overdose:
Vitamin D stored in the human body as calcidiol (25-hydroxy-vitamin D) has a large volume of distribution and a half-life of about 20 to 29 days. However, the synthesis of bioactive vitamin D hormone is tightly regulated and vitamin D toxicity usually occurs only if excessive doses (prescription forms or rodenticide analogs) are taken. Although normal food and pill vitamin D concentration levels are far too low to be toxic in adults, because of the high vitamin A content in codliver oil, it is possible to reach toxic levels of vitamin A (but not vitamin D) via this route, if taken in multiples of the normal dose in an attempt to increase the intake of vitamin D. Most historical cases of vitamin D overdose have occurred due to manufacturing and industrial accidents.

Exposure to sunlight for extended periods of time does not cause vitamin D toxicity. This is because within about 20 minutes of ultraviolet exposure in light skinned individuals (3–6 times longer for pigmented skin) the concentration of vitamin D precursors produced in the skin reach an equilibrium, and any further vitamin D that is produced is degraded. Maximum endogenous production with full body exposure to sunlight is 250 µg (10,000 IU) per day.

The exact long-term safe dose of vitamin D is not entirely known, but dosages up to 250 micrograms (10,000 IU) /day in healthy adults are believed to be safe., and all known cases of vitamin D toxicity with hypercalcemia have involved intake of or over 1,000 micrograms (40,000 IU)/day[38]. The U.S. Dietary Reference Intake Tolerable Upper Intake Level (UL) of vitamin D for children and adults is 50 micrograms/day (2,000 IU/day), although this is widely presumed to be below actual physiological daily requirements. In adults, sustained intake of 2500 micrograms/day (100,000 IU) can produce toxicity within a few months. For infants (birth to 12 months) the tolerable UL is set at 25 micrograms/day (1000 IU/day), and vitamin D concentrations of 1000 micrograms/day (40,000 IU) in infants has been shown to produce toxicity within 1 to 4 months. In the United States, overdose exposure of vitamin D was reported by 284 individuals in 2004, leading to 1 death. The Nutrition Desk Reference states “The threshold for toxicity is 500 to 600 micrograms [vitamin D] per kilogram body weight per day.” The US EPA published an oral LD50 of 619 mg/kg for female rats.

Serum levels of calcidiol (25-hydroxy-vitamin D) are typically used to diagnose vitamin D overdose. In healthy individuals, calcidiol levels are normally between 32 to 70 ng/mL (80 to 175 nmol/L), but these levels may be as much as 15-fold greater in cases of vitamin D toxicity. Serum levels of bioactive vitamin D hormone (1,25(OH2)D) are usually normal in cases of vitamin D overdose.

Some symptoms of vitamin D toxicity are a result of hypercalcemia (an elevated level of calcium in the blood) caused by increased intestinal calcium absorption. Vitamin D toxicity is known to be a cause of high blood pressure. Gastrointestinal symptoms of vitamin D toxicity can include anorexia, nausea, and vomiting. These symptoms are often followed by polyuria (excessive production of urine), polydipsia (increased thirst), weakness, nervousness, pruritus (itch), and eventually renal failure. Other signals of kidney disease including elevated protein levels in the urine, urinary casts, and a build up of wastes in the blood stream can also develop. In one study, hypercalciuria and bone loss occurred in four patients with documented vitamin D toxicity. Another study showed elevated risk of ischaemic heart disease when 25D was above 89 ng/mL.

Vitamin D toxicity is treated by discontinuing vitamin D supplementation, and restricting calcium intake. If the toxicity is severe blood calcium levels can be further reduced with corticosteroids or bisphosphonates. In some cases kidney damage may be irreversible.

Role in immunomodulation:
The hormonally active form of vitamin D mediates immunological effects by binding to nuclear vitamin D receptors (VDR) which are present in most immune cell types including both innate and adaptive immune cells. The VDR is expressed constitutively in monocytes and in activated macrophages, dendritic cells, NK cells, T and B cells. In line with this observation, activation of the VDR has potent anti-proliferative, pro-differentiative, and immunomodulatory functions including both immune-enhancing and immunosuppressive effects.

Effects of VDR-ligands, such as vitamin D hormone, on T-cells include suppression of T cell activation and induction of regulatory T cells, as well as effects on cytokine secretion patterns. VDR-ligands have also been shown to affect maturation, differentiation, and migration of dendritic cells, and inhibits DC-dependent T cell activation, resulting in an overall state of immunosuppression.

VDR ligands have also been shown to increase the activity of natural killer cells, and enhance the phagocytic activity of macrophages. Active vitamin D hormone also increases the production of cathelicidin, an antimicrobial peptide that is produced in macrophages triggered by bacteria, viruses, and fungi. Vitamin D deficiency tends to increase the risk of infections, such as influenza and tuberculosis. In a 1997 study, Ethiopian children with rickets were 13 times more likely to get pneumonia than children without rickets.

These immunoregulatory properties indicate that ligands with the potential to activate the VDR, including supplementation with calcitriol (as well as a number of synthetic modulators), may have therapeutic clinical applications in the treatment of; inflammatory diseases (rheumatoid arthritis, psoriatic arthritis), dermatological conditions (psoriasis, actinic keratosis), osteoporosis, cancers (prostate, colon, breast, myelodysplasia, leukemia, head and neck squamous cell carcinoma, and basal cell carcinoma), and autoimmune diseases (systemic lupus erythematosus, type I diabetes, multiple sclerosis) and in preventing organ transplant rejection. However the effects of supplementation with vitamin D, as yet, remain unclear, and supplementation may be inadvisable for individuals with sarcoidosis and other diseases involving vitamin D hypersensitivity.

A 2006 study published in the Journal of the American Medical Association, reported evidence of a link between Vitamin D deficiency and the onset of Multiple Sclerosis; the authors posit that this is due to the immune-response suppression properties of Vitamin D.

Role in cancer prevention and recovery:
The Canadian Cancer Society recommends that adults should consider supplementeing with 1,000 IU of vitamin D per day during the fall and winter. They base this recommendation on the growing evidence for a link between vitamin D and a reduced risk for colorectal, breast and prostate cancers.

The vitamin D hormone, calcitriol, has been found to induce death of cancer cells in vitro and in vivo. Although the anti-cancer activity of vitamin D is not fully understood, it is thought that these effects are mediated through vitamin D receptors expressed in cancer cells, and may be related to its immunomodulatory abilities. The anti-cancer activity of vitamin D observed in the laboratory has prompted some to propose that vitamin D supplementation might be beneficial in the treatment or prevention of some types of cancer.

A search of primary and review medical literature published between 1970 and 2007 found an increasing body of research supporting the hypothesis that the active form of vitamin D has significant, protective effects against the development of cancer. Epidemiological studies show an inverse association between sun exposure, serum levels of 25(OH)D, and intakes of vitamin D and risk of developing and/or surviving cancer. The protective effects of vitamin D result from its role as a nuclear transcription factor that regulates cell growth, differentiation, apoptosis and a wide range of cellular mechanisms central to the development of cancer. In 2005, scientists released a metastudy which demonstrated a beneficial correlation between vitamin D intake and prevention of cancer. Drawing from a meta-analysis of 63 published reports, the authors showed that intake of an additional 1,000 international units (IU) (or 25 micrograms) of vitamin D daily reduced an individual’s colon cancer risk by 50%, and breast and ovarian cancer risks by 30%.[62] Research has also shown a beneficial effect of high levels of calcitriol on patients with advanced prostate cancer. A randomized intervention study involving 1,200 women, published in June 2007, reports that vitamin D supplementation (1,100 international units (IU)/day) resulted in a 60% reduction in cancer incidence, during a four-year clinical trial, rising to a 77% reduction for cancers diagnosed after the first year (and therefore excluding those cancers more likely to have originated prior to the vitamin D intervention). In 2006, a study at Northwestern University found that taking the U.S. RDA of vitamin D (400 IU per day) cut the risk of pancreatic cancer by 43% in a sample of more than 120,000 people from two long-term health surveys.

A 2006 study using data on over 4 million cancer patients from 13 different countries showed a marked difference in cancer risk between countries classified as sunny and countries classified as less–sunny for a number of different cancers. Research has also suggested that cancer patients who have surgery or treatment in the summer — and therefore make more endogenous vitamin D — have a better chance of surviving their cancer than those who undergo treatment in the winter when they are exposed to less sunlight.

A scientific review undertaken by the National Cancer Institute found no link between baseline vitamin D status and overall cancer mortality. They did find that vitamin D was beneficial in preventing colorectal cancer, which showed an inverse relationship with blood levels “80 nmol/L or higher associated with a 72% risk reduction”.

Role in cardiovascular disease prevention
Research indicates that vitamin D may play a role in preventing or reversing coronary disease. Vitamin D deficiency is associated with an increase in high blood pressure and cardiovascular risk. When researchers monitored the vitamin D levels, blood pressure and other cardiovascular risk factors of 1739 people, of an average age of 59 years for 5 years, they found that those people with low levels of vitamin D had a 62% higher risk of a cardiovascular event than those with normal vitamin D levels.

A report from the National Health and Nutrition Examination Survey (NHANES) found that low levels of vitamin D were associated with an increased risk of peripheral artery disease (PAD). Researchers divided 4,839 participantes in NHANES into quartiles (four groups) based on their blood levels of vitamin D, and found that increasing levels of vitamin D were associated with a lower prevalence of PAD. The authors adjusted for other factors which could influence the development of PAD (such as smoking and high cholesterol) and found that among participants with the lowest vitamin D levels (<17.8 ng/mL) PAD was 80% more common than in individuals with the highest levels (>29.2 ng/mL) of vitamin D.

Researchers publishing in the Journal of Circulation studied the blood levels of vitamin D in 1739 middle-aged children of partipants in the Framingham Heart Study in Framinhgam, Massachussetts (their mean age was 59 years; 55% were women; all were white) who did not have any prior history of cardiovascular disease. These subjects were followed for a mean of 5.4 years. The authors adjusted for other conventional risk factors for cardiovascular disease which could have confounded the results and still found that among the 120 individuals in this group who suffered a first cardiovascular event, those who had the lowest levels of vitamin D were most likely to have had an event. Individuals with lowest levels of vitamin D (<15 ng/mL) had a 62% increased risk (95% confidence interval 1.11 to 2.36, P=0.01) for having a first cardiovascular event compared with those with vitamin D levels of 15 ng/mL. This effect was evident in participants with hypertension, but not in those without hypertension.

In a study of 34 middle-aged men, researchers found that low levels of vitamin D were associated with hypertension, elevated VLDL triglycerides, and impaired insulin metabolism.

As with cancer incidence, a qualitative inverse correlations was found between coronary disease incidence and serum vitamin D levels of 32.0 versus 35.5 ng/mL. Cholesterol levels were found to be reduced in gardeners in the UK during the summer months. Heart attacks peak in winter and decline in summer in temperate but not tropical latitudes.

The issue of vitamin D in heart health has not yet been settled. Exercise may account for some of the benefit attributed to vitamin D, since vitamin D levels are higher in physically active persons. Moreover, there may be an upper limit after which cardiac benefits decline. One study found an elevated risk of ischaemic heart disease in Southern India in individuals whose vitamin D levels were above 89 ng/mL. These sun-living groups results do not generalize to sun-deprived urban dwellers. Among a group with heavy sun exposure, taking supplemental vitamin D are unlikely to result in blood levels over the ideal range, while urban dwellers not taking supplemental vitamin D may fall under the levels recognized as ideal, and being below the preferable levels may cause adverse affects on the health of each group.

Role in all-cause mortality:
Low vitamin D levels are associated with cancer, diabetes, and hypertension, and in increased mortality among patients undergoing dialysis. Using the National Health and Nutrition Examination Survey Melamed and coworkers at the Albert Einstein College of Medicine evaluated whether low serum vitamin D levels were associated with mortality in the general population. The researchers studied the association of low vitamin D levels with all-cause mortality, cancer, and cardiovascular disease (CVD) mortality among 13,331 diverse American adults who were 20 years or older. Vitamin D levels of these participants were collected over a 6-year period (from 1988 through 1994), and individuals were passively followed for mortality through the year 2000. The researchers found that being older, female, nonwhite, having diabetes, a current smoker, and having a higher body mass index were all independently associated with a greater risk of being vitamin D deficient, while greater physical activity, vitamin D supplementation, and evaluating subjects in a non-winter season (greater exposure to sunshine) were all associated with higher levels. During a median of 8.7 years of follow-up, there were 1806 deaths, including 777 (43%) from CVD. The authors divided the participants into 4 groups (quartiles) based on their serum vitamin D levels, and adjusted for baseline demographics, season, and CVD risk factors. Being in the lowest quartile (vitamin D levels <17.8 ng/mL) was associated with a 26% increased rate of all-cause mortality (mortality rate ratio, 1.26; 95% CI, 1.08-1.46). The adjusted models of CVD and cancer mortality revealed a higher risk, but it was not statistically significant. The authors concluded that having low levels of vitamin D (<17.8 ng/mL) was independently associated with an increase in all-cause mortality in the general population.

Among many factors that may be responsible for vitamin Ds apparent beneficial effect on all-cause mortality is its effect on telomeres and its potential effect on slowing aging. Richards and coworkers examined whether vitamin D concentrations would slow the rate of shortening of leukocyte telomeres (a marker of aging). The authors stated that vitamin D is a potent inhibitor of the proinflammatory response and slows the turnover of leukocytes. Leukocyte telomere length (LTL) predicts the development of aging-related disease, and length of these telomeres decreases with each cell division and with increased inflammation (more common in the elderly). Researchers measured serum vitamin D concentrations in 2160 women aged 18-79 years (mean age: 49.4) from a large population-based cohort of twins. This study divided the group into thirds [tertiles http://en.wiktionary.org/wiki/tertile] based on vitamin D levels, and found that increased age was significantly associated with shorter LTL (r = -0.40, P < 0.0001). Higher serum vitamin D concentrations were significantly associated with longer LTL (r = 0.07, P = 0.0010), and this finding persisted even after adjustment for age (r = 0.09, P < 0.0001) and other variables that independently could affect LTL (age, season of vitamin D measurement, menopausal status, use of hormone replacement therapy, and physical activity). The difference in LTL between the highest and lowest tertiles of vitamin D was highly significant (P = 0.0009), and the authors stated that this was equivalent to 5.0 years of aging. The authors concluded that higher vitamin D levels, (easily modifiable through nutritional supplementation), were associated with longer LTL, which underscores the potentially beneficial effects of vitamin D on aging and age-related diseases.

Click to Get More Knowledge About Vitamin D

..........

Resources:

http://en.wikipedia.org/wiki/Vitamin_D

http://www.sciencedaily.com/articles/v/vitamin_d.htm

Categories
Ailmemts & Remedies

Psoriasis

Psoriasis is a disease/disorder, where angry red lesions on the skin , multiply, and scale over with silvery patches, Of course this is an over simplification.

But Psoriasis is non contagious, Usually inherited. It is an Autoimmune disorder and very rarely life threatening.

CLICK & SEE THE PICTURES

The word Psoriasis has come from ancient Greece and it means itch. Red eruptions appear on the surface of the skin and begin to eatch.These areas form plaques over the reddendend lesions. The plaques resemble multi-layered scales of skin. Psoriasis varies in intensity from a few random spots to a massive outbreak sometimes covering the entire body and requiring hospitalization too.

Psoriasis has a tendency to be genetically inherited.Recently it has been classified as being an autoimmune disorder.This disorder can originate in juveniles or not be evident until adulthood.It has been reported to initiate as early as birth or not occur until very late in life.Once Psoriasis begins, there are only remissions and replaces of varying degree of intesity..There is no known cure yet,only possible control over the severity.

Psoriasis reacts.It has triggers(such as systematic step infection) which can cause the body to go from mild to severe case within days.There are also other factors,such as sunlight,which may help to decrease the severity.

Psoriasis occurs in 2% of the total population.It can be mildly annoying problem or can destroy the self-esteem and life of the victim.Although it is not at al contagious, it definitely an ugly disease that can alenate coworkers and acquitances.

Arthritis can sometimes stem from psoriasis, attacking the joint spaces,giving the victim another disease to deal with.This disease can be consuming.The ugliness of the patches,the chronic eatching and flaking(although not life threatening) impact the self-esteem and life style of the victim.Time and money are spent to keep it under control.

Treatment Advances Improve Outlook
With the emergence of several new therapies, including the biologic agents, more people are experiencing substantial improvements and reporting a greatly improved quality of life.

References:
American Academy of Dermatology. “American Academy of Dermatology’s Psoriasis Public Awareness Campaign Provides Latest Information About this Skin Condition.” Available at: http://www.newswire1.net/NW2004/C_AAD_CH/111504/index.html. Accessed April 26, 2005. American Academy of Dermatology. Psoriasis. Available at: http://www.aad.org/public/Publications/pamphlets/Psoriasis.htm. Accessed April 26, 2005

Topical treatment

Bath solutions and moisturizers help sooth affected skin and reduce the dryness which accompanies the build-up of skin on psoriasis plaques. Medicated creams and ointments applied directly onto psoriasis plaques can help reduce inflammation, remove built-up scale, reduce skin turn over, and clear affected skin of plaques. Ointment and creams containing coal tar, anthralin, corticosteroids, vitamin D3 analogues (for example, calcipotriol), and retinoids are routinely used. The mechanism of action of each is probably different but they all help to normalise skin cell production and reduce inflammation.

The disadvantages of topical agents are variabily that they can often irritate normal skin, can be awkward to apply, cannot be used for long periods, can stain clothing or have a strong odour. As a result, it is sometimes difficult for people to maintain the regular application of these medications. Abrupt withdrawal of some topical agents, particularly corticosteroids, can cause an aggressive recurrence of the condition. This is known as a rebound of the condition.

Some topical agents are used in conjunction with other therapies, especially phototherapy.

Phototherapy

It has long been recognised that daily, short, nonburning exposure to sunlight helped to clear or improve psoriasis. Niels Finsen was the first physician to investigate the theraputic effects of sunlight scientifically and to use sunlight in clinical practice. This became known as phototherapy.

Sunlight contains many different wavelengths of light. It was during the early part of the 20th century that it was recognised that for psoriasis the therapeutic property of sunlight was due to the wavelengths classified as ultraviolet (UV) light.

Ultraviolet wavelengths are subdivided into UVA (380–315 nm), UVB (315–280 nm), and UVC (< 280 nm). Ultraviolet B (UVB) (315–280 nm) is absorbed by the epidermis and has a beneficial effect on psoriasis. Narrowband UVB (311 to 312 nm), is that part of the UVB spectrum that is most helpful for psoriasis. Exposure to UVB several times per week, over several weeks can help people attain a remission from psoriasis.

Ultraviolet light treatment is frequently combined with topical (coal tar, calcipotriol) or systemic treatment (retinoids) as there is a synergy in their combination. The Ingram regime, involves UVB and the application of anthralin paste. The Goeckerman regime, combines coal tar ointment with UVB.

A form of phototherapy called Grenz Rays (also called ultrasoft X-rays or Bucky rays) was a popular treatment of psoriasis during the middle of the 20th century. This type of therapy was superseded by ultraviolet therapy and is no longer commonly used.

Photochemotherapy

Psoralen and ultraviolet A phototherapy (PUVA) combines the oral or topical administration of psoralen with exposure to ultraviolet A (UVA) light. Precisely how PUVA works is not known. The mechanism of action probably involves activation of psoralen by UVA light which inhibits the abnormally rapid production of the cells in psoriatic skin. There are multiple mechanisms of action associated with PUVA, including effects on the skin immune system.

Dark glasses must be worn during PUVA treatment because there is a risk of cataracts developing from exposure to sunlight. PUVA is associated with nausea, headache, fatigue, burning, and itching. Long-term treatment is associated with squamous-cell and melanoma skin cancers.

Systemic treatment

Psoriasis which is resistant to topical treatment and phototherapy is treated by medications that are taken internally by pill or injection. This is called systemic treatment. Patients undergoing systemic treatment are required to have regular blood and liver function tests because of the toxicity of the medication. Pregnancy must be avoided for the majority of these treatments. Most people experience a recurrence of psoriasis after systemic treatment is discontinued.

The three main traditional systemic treatments are the immunosupressant drugs methotrexate and ciclosporin, and retinoids, which are a synthetic forms of vitamin A. Other additional drugs, not specifically licensed for psoriasis, have been found to be effective. These include the antimetabolite tioguanine, the cytotoxic agent hydroxyurea, sulfasalazine, the immunosupressants mycophenolate mofetil, azathioprine and oral tacrolimus. These have all been used effectively to treat psoriasis when other treatments have failed. Although not licensed in many other countries fumaric acid esters have also been used to treat severe psoriasis in Germany for over 20 years.

Biologics[4] are the newest class of systemic treatment for psoriasis. These are manufactured proteins that interrupt the immune process involved in psoriasis. Unlike generalised immunosuppressant therapies such as methotrexate, biologics focus on specific aspects of the immune function leading to psoriasis. These drugs are relatively new, and their long-term impact on immune function is unknown. Examples include Amevive®, etanercept (Enbrel®), Humira®, infliximab (Remicade®) and Raptiva.

Alternative Therapy

  • Antibiotics are not indicated in routine treatment of psoriasis. However, antibiotics may be employed when an infection, such as that caused by the bacteria Streptococcus, triggers an outbreak of psoriasis, as in certain cases of guttate psoriasis.
  • Climatotherapy involves the notion that some diseases can be successfully treated by living in particular climate. Several psoriasis clinics are located throughout the world based on this idea. The Dead Sea is one of the most popular locations for this type of treatment.
  • In Turkey, doctor fish which live in the outdoor pools of spas, are encouraged to feed on the psoriatic skin of people with psoriasis. The fish only consume the affected areas of the skin. The outdoor location of the spa may also have a beneficial effect. This treatment can provide temporary relief of symptoms. A revisit to the spas every few months is often required.
  • Some people subscribe to the view that psoriasis can be effectively managed through a healthy lifestyle. This view is based on anecdote, and has not been subjected to formal scientific evaluation. Nevertheless, some people report that minimizing stress and consuming a healthy diet, combined with rest, sunshine and swimming in saltwater keep lesions to a minimum. This type of “lifestyle” treatment is suggested as a long-term management strategy, rather than an initial treatment of severe psoriasis.
  • Some psoriasis patients use herbology as a holistic approach that aims to treat the underlying causes of psoriasis.
  • A psychological symptom management programme has been reported as being a helpful adjunct to traditional therapies in the management of psoriasis.
  • It is possible that Epsom salt may have a positive effect in reducing the effects of psoriasis.

Future Drug Development

Historically, agents used to treat psoriasis were discovered by experimentation or by accident. In contrast, current novel therapeutic agents are designed from a better understanding of the immune processes involved in psoriasis and by the specific targeting of molecular mediators. Examples can be seen in the use of biologics which target T cells and TNF inhibitors. Future innovation should see the creation of additional drugs that refine the targeting of immune-mediators further.

Research into antisense oligonucleotides is in its infancy but carries the potential to provide novel theraputic strategies for treating psoriasis.

Prognosis

Psoriasis is a chronic lifelong condition. There is currently no cure but various treatments can help to control the symptoms. Many of the most effective agents used to treat severe psoriasis carry an increased risk of significant morbidity including skin cancers, lymphoma and liver disease. However, the majority of people’s experience of psoriasis is that of minor localised patches, particularly on the elbows and knees, which can be treated with topical medication. Psoriasis does get worse over time but it is not possible to predict who will go on to develop extensive psoriasis or those in whom the disease may appear to vanish. Individuals will often experience flares and remissions throughout their life. Controlling the signs and symptoms typically requires lifelong therapy.

“The heartbreak of psoriasis”

The phrase “the heartbreak of psoriasis” is often used both seriously and ironically to describe the emotional impact of the disease. It can be found in various advertisements for topical and other treatments; conversely, it has been used to mock the tendency of advertisers to exaggerate (or even fabricate) aspects of a malady for financial gain. (In Bloom County, the character of Opus once considered the possibility of his suffering from “the heartbreak of nose hemorrhoids.”) While many products today use the phrase in their advertising, it originated in a 1960s advertising campaign for Tegrin, a coal tar-based medicated soap.

Partly extracted from: http://en.wikipedia.org/wiki/Psoriasis

Enhanced by Zemanta
css.php