Categories
Ailmemts & Remedies

Progeria

[amazon_link asins=’1908192550,B00JDC56VE,1783753269,B00XCDULJM,0374302847,B06XQLDWTY,B00K4M4TB0,B00TZE2QQI,B01NAIHT6G’ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’0d203c35-562e-11e7-896b-a12ed9f241f4′]

Other names :Hutchinson–Gilford progeria syndrome, Hutchinson–Gilford syndrome

Definition:-

Progeria is a disease that produces rapid aging, beginning in childhood. It  is an extremely rare, severe, genetic condition wherein symptoms resembling aspects of aging are manifested at an early age. The disorder has a very low incidence and occurs in one per eight million live births. Those born with progeria typically live about thirteen years, although many have been known to live into their late teens and early twenties and rare individuals may even reach their forties. It is a genetic condition that occurs as a new mutation and is not usually inherited, although there is a uniquely inheritable form. This is in contrast to another rare but similar premature aging syndrome, dyskeratosis congenita (DKC), which is inheritable and will often be expressed multiple times in a family line.

CLICK & SEE THE PICTURES

Scientists are particularly interested in progeria because it might reveal clues about the normal process of aging. Progeria was first described in 1886 by Jonathan Hutchinson and also described independently in 1897 by Hastings Gilford. The condition was later named Hutchinson-Gilford Progeria syndrome (HGPS).

Heart problems or stroke is the eventual cause of death in most children with progeria. There’s no cure for this condition, but ongoing research shows some promise for treatment.

Symptoms:-

Usually within the first year of life, growth of a child with progeria slows markedly so that height and weight fall below average for his or her age, and weight falls low for height. Motor development and mental development remain normal.

The symptoms of this progressive disorder include:

*Slowed growth, with below-average height and weight
*A narrowed face and beaked nose, which makes the child look old
*Hair loss (alopecia), including eyelashes and eyebrows
*Hardening and tightening of skin on trunk and extremities (scleroderma)
*Loose, aged-looking skin
*Head too large for face
*Prominent scalp veins
*Prominent eyes
*Small lower jaw (micrognathia)
*High-pitched voice
*Delayed and abnormal tooth formation
*Loss of body fat and muscle
*Stiff joints
*Hip dislocation
*Growth failure during the first year of life
*Narrow, shrunken or wrinkled face
*Baldness
*Loss of eyebrows and eyelashes
*Short stature
*Large head for size of face (macrocephaly)
*Open soft spot (fontanelle)
*Small jaw (micrognathia)
*Dry, scaly, thin skin
*Limited range of motion
*Teeth – delayed or absent formation

The earliest symptoms include failure to thrive and a localized scleroderma-like skin condition. As a child ages past infancy, additional conditions become apparent. Limited growth, alopecia, and a distinctive appearance (small face and jaw, pinched nose) are all characteristic of progeria. People diagnosed with this disorder usually have small, fragile bodies, like those of elderly people. Later, the condition causes wrinkled skin, atherosclerosis, and cardiovascular problems.

Causes:-
Hutchinson-Gilford progeria syndrome (HGPS) is a childhood disorder caused by a point mutation in position 1824 of the LMNA gene, replacing cytosine with thymine, creating an unusable form of the protein Lamin A. Lamin A is part of the building blocks of the nuclear envelope.

Unlike most other “accelerated aging diseases” (such as Werner’s syndrome, Cockayne’s syndrome, or xeroderma pigmentosum), progeria is not caused by defective DNA repair. Because these “accelerated aging” diseases display different aspects of aging but never every aspect, they are often called “segmental progerias.

Diagnosis:-
Diagnosis is suspected according to signs and symptoms, such as skin changes, abnormal growth, and loss of hair. It can be confirmed through a genetic test.

Exams and Tests:-
The signs include:

*Insulin-resistant diabetes (diabetes that does not respond readily to insulin injections)
*Skin changes similar to that seen in scleroderma (the connective tissue becomes tough and hardened)

Cardiac stress testing may reveal signs of early atherosclerosis of blood vessels.

Genetic testing can detect mutations in lamin A that cause progeria.

Treatment:-
No treatments have been proven effective. Most treatment focuses on reducing complications (such as cardiovascular disease) with heart bypass surgery or low-dose aspirin. Children may also benefit from a high-calorie diet.

Growth hormone treatment has been attempted.

A type of anticancer drug, the farnesyltransferase inhibitors (FTIs), has been proposed, but their use has been mostly limited to animal models. A Phase II clinical trial using the FTI Lonafarnib began in May 2007.

Prognosis:-
There is no known cure. Few people with progeria exceed 13 years of age. At least 90% of patients die from complications of atherosclerosis, such as heart attack or stroke.

Mental development is not affected. The development of symptoms is comparable to aging at a rate eight to ten times faster than normal, although certain age-related conditions do not occur. Specifically, patients show no neurodegeneration or cancer predisposition. They do not develop physically mediated “wear and tear” conditions commonly associated with aging, like cataracts (caused by UV exposure) and osteoarthritis (caused by mechanical wear).

Although there may not be any successful treatments for Progeria itself, there are treatments for the problems it causes, such as arthritic, respiratory, and cardiovascular problems.

Epidemiology:-
A study from the Netherlands has shown an incidence of 1 in 4 million births. Currently, there are between 35 and 45 known cases in the world.Approximately 100 cases have been formally identified in medical history.

Classical Hutchinson-Gilford Progeria Syndrome is almost never passed on from parent to child. It is usually caused by a new (sporadic) mutation during the early division of the cells in the child. It is usually genetically dominant; therefore, parents who are healthy will normally not pass it on to their children. Affected children rarely live long enough to have children themselves.

There have been only two known cases in which it became evident that a healthy parent can carry the LMNA mutation that causes progeria. A family from India has five children with progeria; they were the subject of a 2005 Bodyshock documentary entitled The 80 Year Old Children. In the other case, a family from Belgium has two children with progeria.

Research:-
Several discoveries have been made that have led to greater understanding and perhaps eventual treatment.

A 2003 report in Nature said that progeria may be a de novo dominant trait. It develops during cell division in a newly conceived zygote or in the gametes of one of the parents. It is caused by mutations in the LMNA (lamin A protein) gene on chromosome 1; the mutated form of lamin A is commonly known as progerin. One of the authors, Leslie Gordon, was a physician who didn’t know anything about progeria until her own son, Sam, was diagnosed at 21 months. Gordon and her husband, pediatrician Scott Berns, founded the Progeria Research Foundation.

Support Groups:  ->Progeria Research Foundation, Inc.

Lamin A:-
Nuclear lamin A is a protein scaffold on the inner edge of the nucleus that helps organize nuclear processes such as RNA and DNA synthesis.

Prelamin A contains a CAAX box at the C-terminus of the protein (where C is a cysteine and A is any aliphatic amino acids). This ensures that the cysteine is farnesylated and allows prelamin A to bind membranes, specifically the nuclear membrane. After prelamin A has been localized to the cell nuclear membrane, the C-terminal amino acids, including the farnesylated cysteine, are cleaved off by a specific protease. The resulting protein is now lamin A, is no longer membrane-bound, and carries out functions inside the nucleus.

In HGPS, the recognition site that the enzyme requires for cleavage of prelamin A to lamin A is mutated. Lamin A cannot be produced, and prelamin A builds up on the nuclear membrane, causing a characteristic nuclear blebbing. This results in the premature aging symptoms of progeria, although the mechanism connecting the misshapen nucleus to the symptoms is not known.

A study that compared HGPS patient cells with the skin cells from LMNA young and elderly human subjects found similar defects in the HGPS and elderly cells, including down-regulation of certain nuclear proteins, increased DNA damage, and demethylation of histone, leading to reduced heterochromatin. Nematodes over their lifespan show progressive lamin changes comparable to HGPS in all cells but neurons and gametes. These studies suggest that lamin A defects contribute to normal aging.

Mouse model of progeria:-
A mouse model of progeria exists, though in the mouse, the LMNA prelamin A is not mutated. Instead, ZMPSTE24, the specific protease that is required to remove the C-terminus of prelamin A, is missing. Both cases result in the buildup of farnesylated prelamin A on the nuclear membrane and in the characteristic nuclear LMNA blebbing. Fong et al. use a farnesyl transferase inhibitor (FTI) in this mouse model to inhibit protein farnesylation of prelamin A. Treated mice had greater grip strength and lower likelihood of rib fracture and may live longer than untreated mice.

This method does not directly “cure” the underlying cause of progeria. This method prevents prelamin A from going to the nucleus in the first place so that no prelamin A can build up on the nuclear membrane, but equally, there is no production of normal lamin A in the nucleus. Luckily, lamin A does not appear to be essential; indeed, mouse models in which the genes for prelamin A and C are knocked out show no symptoms. This also shows that it is the buildup of prelamin A in the wrong place, rather than the loss of the normal function of lamin A, that causes the disease.

Confocal microscopy photographs of the descending aortas of two 15-month-old progeria mice, one untreated (left picture) and the other treated with the farnsyltransferase inhibitor drug tipifarnib (right picture). The microphotographs show prevention of the vascular smooth muscle cell loss that is otherwise rampant by this age. Staining was smooth muscle alpha-actin (green), lamins A/C (red) and DAPI (blue). (Original magnification, x 40)It was hypothesized that part of the reason that treatment with an FFI such as alendronate is inefficient is due to prenylation by geranylgeranyltransferase. Since statins inhibit geranylgeranyltransferase, the combination of an FFI and statins was tried, and markedly improved “the aging-like phenotypes of mice in the metalloproteinase ZMPSTE24, including growth retardation, loss of weight, lipodystrophy, hair loss, and bone defects”.

CLICK & SEE

Untreated cells from children with the genetic disease progeria (left) compared to similar cells treated with farnesyltransferase inhibitors (FTIs). In the test tube, FTIs reverse the nuclear damage caused by the disease.

Popular culture:-
The 1922 short story “The Curious Case of Benjamin Button” by F. Scott Fitzgerald (and later released as a feature film in 2008) may have been inspired by progeria. The main character, Benjamin Button, is born as a seventy-year-old man and rapidly ages backwards.

The Indian film Paa, released in December 2009, has its story line around progeria (starring Amitabh Bachchan playing a twelve year old boy Auro).

Progeria is also a central theme in the animated film Renaisance in which one of the characters finds the much sought cure.

You may click & see:-
*Biogerontology
*Degenerative disease
*Laminopathies
*Hayley Okines, (an English girl with progeria who is known for spreading progeria awareness)

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
http://en.wikipedia.org/wiki/Progeria
http://www.nlm.nih.gov/medlineplus/ency/article/001657.htm
http://www.mayoclinic.com/health/progeria/DS00936

Enhanced by Zemanta
Categories
Diagnonistic Test

Chorionic Villus Sampling

[amazon_link asins=’B0713WG3VZ,B00GNOW618,8171795625,0824773608,1870129601,0192620053′ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’81018f44-c691-11e7-b4a7-5765e33c079c’]

Definition
Chorionic villi are small structures in the placenta that act like blood vessels. These structures contain cells from the developing fetus. A test that removes a sample of these cells through a needle is called chorionic villus sampling (CVS).Chorionic villus sampling (CVS) is the removal of a small piece of placenta tissue (chorionic villi) from the uterus during early pregnancy to screen the baby for genetic defects
CLICK & SEE
CVS answers many of the same questions as amniocentesis about diseases that the baby might have. Diseases that can be diagnosed with CVS include Tay-Sachs, sickle cell anemia, cystic fibrosis, thalassemia, and Down syndrome. (Rh incompatibility and neural tube defects, however, can be diagnosed only through amniocentesis.) CVS can be done earlier in pregnancy than amniocentesis and can be done when there is not enough amniotic fluid to allow amniocentesis. However, it has some extra risks when compared with amniocentesis.

Why the Test is Performed
The test is a way of detecting genetic disorders. The sample is used to study the DNA, chromosomes, and enzymes of the fetus. It can be done sooner than amniocentesis, about 10 to 12 weeks after your last menstrual period. Test results take about 1 to 2 weeks, whereas amniocentesis results may take longer.

Chorionic villus sampling does not detect neural tube defects. If neural tube defects or Rh incompatibility are a concern, an amniocentesis will be performed.

This test can usually not diagnose problems in the way the body forms.

How the Test is Performed
CVS can be done through the cervix (transcervical) or through the abdomen (transabdominal). The techniques are equally safe when done by a provider with experience, although miscarriage rates are slightly higher when done through the cervix. The health care provider will use ultrasound to pick the safest approach and as a guide during sampling.

An abdominal ultrasound is performed to determine the position of the uterus, the size of the gestational sac, and the position of the placenta within the uterus. Your vulva, vagina, cervix, and abdomen are cleaned with an antiseptic such as Betadine.

The transcervical procedure is performed by inserting a thin plastic tube through the vagina and cervix to reach the placenta. The provider uses ultrasound images to help guide the tube into the appropriate area and then removes a small sample of chorionic villus tissue.

The transabdominal procedure is performed by inserting a needle through the abdomen and uterus and into the placenta. Ultrasound is used to help guide the needle, and a small amount of tissue is drawn into the syringe.

The sample is placed in a dish and evaluated in a laboratory.

What happens when the test is performed.
There are two ways that your doctor can perform CVS. Some patients have the sampling done through the vagina and cervix. Most patients have the sampling done through the abdominal wall. For both types of sampling, you lie on your back on an examination table and the doctor uses ultrasound to locate the fetus and the placenta.

If the sampling is to be done through the vagina and cervix, you place your feet in footrests and bend your knees up, as you would for a pelvic examination. A speculum (a device that looks like a duck-bill that can be opened and closed) is used to open the vagina so that your doctor can see inside. A long tube, much narrower than a straw, is inserted through the cervix and moved forward while your doctor watches on the ultrasound until it is next to the fetal side of the placenta. A small sample of the lining around the fetus is then pulled into the tube for testing.

If the sampling is to be done through the abdominal wall, your lower abdomen is cleaned with an antibacterial soap. In some cases, the doctor uses a small needle to inject a numbing medicine just under the skin, so that you do not feel the sampling needle. (Because the sampling needle does not cause much more stinging than the numbing medicine itself, not every doctor includes this step.) A hollow needle several inches long is inserted through the skin and muscle of the abdomen and through the wall of the uterus, to the edge of the placenta. This needle is held in place as a guide needle. A narrower needle is then inserted through the first needle and is rotated and moved inward and outward a number of times while a sample is collected into an attached syringe.

The fetal heart tones and the mother’s blood pressure and heart rate are checked at the beginning and end of the procedure. The whole procedure takes close to 30 minutes.

How to Prepare for the Test.
CVS can be done between the 10th and 13th weeks of pregnancy. Tell your doctor ahead of time if you have ever had an allergic reaction to lidocaine or the numbing medicine used at the dentist’s office.

Your health care provider will explain the procedure, its risks, and alternative procedures such as amniocentesis. Genetic counseling is recommended prior to the procedure. This will allow you to make an unhurried, informed decision regarding options for prenatal diagnosis.

You will be asked to sign a consent form before this procedure, and you may be asked to wear a hospital gown.

The morning of the procedure you may be asked to drink fluids and refrain from urinating to fill your bladder, which allows adequate visualization so the sample may be taken.

How the Test Will Feel
The ultrasound doesn’t hurt. A clear, water-based conducting gel is applied to the skin to help with the transmission of the sound waves. A handheld probe called a transducer is then moved over the area. In addition, your health care provider may apply pressure on your abdomen to find the position of your uterus.

The antiseptic cleansing solution will feel cold at first nd may irritate your skin if not washed off after the procedure. Some people are allergic to Betadine. Notify your health care provider if you are allergic to Betadine or if you have any other allergies.

Some women say the vaginal approach feels like a Pap smear with some discomfort and a feeling of pressure. There may be a small amount of vaginal bleeding following the procedure.

An obstetrician can perform this procedure in about 5 minutes, after the preparation

Risk Factors:

The risks of CVS are only slightly higher than those of an amniocentesis.

Possible complications include:

* Bleeding
* Infection
* Miscarriage
* Rh incompatibility in the mother
* Rupture of membranes

Signs of complications include:

* Excessive bleeding
* Excessive vaginal discharge
* Fever

The risk of miscarriage and other complications from CVS is slightly higher than the risk from amniocentesis, although some parents feel that it is worth the extra risk to be able to makedecisions earlier in the pregnancy if the results show the baby has a health problem. There have also been some reports that suggest there is a very small risk of birth defects (abnormal limbs) in the fetus.

One particular difficulty with this test is that due to variability in the cells of the placenta (called mosaicism), occasionally you can have an abnormal test result even if the baby is normal and healthy. This might lead you to make decisions about pregnancy termination that you would not have made if you had better information.

Some women have vaginal bleeding after the procedure. Infection is uncommon.

Report any signs of complications to your health care provider.

CVS may also cause limb problems in the fetus. This risk appears to be very low (1 in 3,000) when CVS is performed after 10 weeks gestational ag

Time to know the  result of the test
Chromosome analysis of the sample takes two weeks or more. The results of some tests may be available sooner.

RESULTS:-

Normal Results
A normal result means there are no signs of any genetic defects. However the test could miss some genetic defects.

Note: Normal value ranges may vary slightly among different laboratories. Talk to your doctor about the meaning of your specific test results.

What Abnormal Results Mean

An abnormal result may be a sign of more than 200 disorders, including:

* Down syndrome
* Hemoglobinopathies
* Tay-Sachs disease

Considerations
If your blood is Rh negative, you may receive RhoGAM to prevent Rh incompatibility.
You will receive a follow-up ultrasound 2 to 4 days after the procedure to make sure the pregnancy is proceeding normally.

Resources:
https://www.health.harvard.edu/fhg/diagnostics/chorionic-villus-sampling.shtml
http://www.nlm.nih.gov/medlineplus/ency/article/003406.htm

Reblog this post [with Zemanta]
Categories
Ailmemts & Remedies Pediatric

Down Syndrome

Boy assembling a book case
Image via Wikipedia

[amazon_link asins=’144059290X,1606130668,1890627550,1606130099,B06ZYC9CRX,160613020X,B01JSD4WQ2,B071HQWBYW,1606132636′ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’1aae10c2-65f4-11e7-8dc4-3d823d3452b7′]

Definition
Down syndrome is the most common cause of mental retardation and malformation in a newborn. It occurs because of the presence of an extra chromosome.

.CLICK & SEE

Chromosomes are the units of genetic information that exist within every cell of the body. Twenty-three distinctive pairs, or 46 total chromosomes, are located within the nucleus (central structure) of each cell. When a baby is conceived by the combining of one sperm cell with one egg cell, the baby receives 23 chromosomes from each parent, for a total of 46 chromosomes. Sometimes, an accident in the production of a sperm or egg cell causes that cell to contain 24 chromosomes. This event is referred to as nondisjunction. When this defective cell is involved in the conception of a baby, that baby will have a total of 47 chromosomes. The extra chromosome in Down syndrome is labeled number 21. For this reason, the existence of three such chromosomes is sometimes referred to as Trisomy 21.

In a very rare number of Down syndrome cases (about 1–2%), the original egg and sperm cells are completely normal. The problem occurs sometime shortly after fertilization; during the phase where cells are dividing rapidly. One cell divides abnormally, creating a line of cells with an extra chromosome 21. This form of genetic disorder is called a mosaic. The individual with this type of Down syndrome has two types of cells: those with 46 chromosomes (the normal number), and those with 47 chromosomes (as occurs in Down syndrome). Some researchers have suggested that individuals with this type of mosaic form of Down syndrome have less severe signs and symptoms of the disorder.

Another relatively rare genetic accident which can cause Down syndrome is called translocation. During cell division, the number 21 chromosome somehow breaks. A piece of the 21 chromosome then becomes attached to another chromosome. Each cell still has 46 chromosomes, but the extra piece of chromosome 21 results in the signs and symptoms of Down syndrome. Translocations occur in about 3–4% of cases of Down syndrome.

Down syndrome occurs in about one in every 800–1,000 births. It affects an equal number of boys and girls. Less than 25% of Down syndrome cases occur due to an extra chromosome in the sperm cell. The majority of cases of Down syndrome occur due to an extra chromosome 21 within the egg cell supplied by the mother (nondisjunction). As a woman’s age (maternal age) increases, the risk of having a Down syndrome baby increases significantly. For example, at younger ages, the risk is about one in 4,000. By the time the woman is age 35, the risk increases to one in 400; by age 40 the risk increases to one in 110; and by age 45 the risk becomes one in 35. There is no increased risk of either mosaicism or translocation with increased maternal age.

Causes and Symptoms:-
While Down syndrome is a chromosomal disorder, a baby is usually identified at birth through observation of a set of common physical characteristics. Babies with Down syndrome tend to be overly quiet, less responsive, with weak, floppy muscles. Furthermore, a number of physical signs may be present. These include:

*flat appearing face
*small head
*flat bridge of the nose
*smaller than normal, low-set nose
*small mouth, which causes the tongue to stick out and to appear overly large
*upward slanting eyes
*extra folds of skin located at the inside corner of each eye, near the nose (called epicanthal folds)
*rounded cheeks
*small, misshapen ears
*small, wide hands
*an unusual, deep crease across the center of the palm (called a simian crease)
*a malformed fifth finger
*a wide space between the big and the second toes
*unusual creases on the soles of the feet
*overly-flexible joints (sometimes referred to as being double-jointed)
*ahorter than normal height

Other types of defects often accompany Down syndrome. About 30–50% of all children with Down syndrome are found to have heart defects. A number of different heart defects are common in Down syndrome, including abnormal openings (holes) in the walls that separate the heart’s chambers (atrial septal defect, ventricular septal defect). These result in abnormal patterns of blood flow within the heart. The abnormal blood flow often means that less oxygen is sent into circulation throughout the body. Another heart defect that occurs in Down syndrome is called Tetralogy of Fallot. Tetralogy of Fallot consists of a hole in the heart, along with three other major heart defects.

Malformations of the gastrointestinal tract are present in about 5–7% of children with Down syndrome. The most common malformation is a narrowed, obstructed duodenum (the part of the intestine into which the stomach empties). This disorder, called duodenal atresia, interferes with the baby’s milk or formula leaving the stomach and entering the intestine for digestion. The baby often vomits forcibly after feeding, and cannot gain weight appropriately until the defect is repaired.

Other medical conditions that occur in patients with Down syndrome include an increased chance of developing infections, especially ear infections and pneumonia; certain kidney disorders; thyroid disease (especially low or hypothyroid); hearing loss; vision impairment requiring glasses (corrective lenses); and a 20-times greater chance of developing leukemia (a blood disorder).

Development in a baby and child with Down syndrome occurs at a much slower than normal rate. Because of weak, floppy muscles (hypotonia), babies learn to sit up, crawl, and walk much later than their normal peers. Talking is also quite delayed. The level of mental retardation is considered to be mild-to-moderate in Down syndrome. The actual IQ range of Down syndrome children is quite varied, but the majority of such children are in what is sometimes known as the trainable range. This means that most people with Down syndrome can be trained to do regular self-care tasks, function in a socially appropriate manner in a normal home environment, and even hold simple jobs.

As people with Down syndrome age, they face an increased chance of developing the brain disease called Alzheimer’s (sometimes referred to as dementia or senility). Most people have a six in 100 risk of developing Alzheimer’s, but people with Down syndrome have a 25 in 100 chance of the disease. Alzheimer’s disease causes the brain to shrink and to break down. The number of brain cells decreases, and abnormal deposits and structural arrangements occur. This process results in a loss of brain functioning. People with Alzheimer’s have strikingly faulty memories. Over time, people with Alzheimer’s disease will lapse into an increasingly unresponsive state. Some researchers have shown that even Down syndrome patients who do not appear to have Alzheimer’s disease have the same changes occurring to the structures and cells of their brains.

As people with Down syndrome age, they also have an increased chance of developing a number of other illnesses, including cataracts, thyroid problems, diabetes, and seizure disorders.

Diagnosises:-
Diagnosis is usually suspected at birth, when the characteristic physical signs of Down syndrome are noted. Once this suspicion has been raised, genetic testing (chromosome analysis) can be undertaken in order to verify the presence of the disorder. This testing is usually done on a blood sample, although chromosome analysis can also be done on other types of tissue, including skin. The cells to be studied are prepared in a laboratory. Chemical stain is added to make the characteristics of the cells and the chromosomes stand out. Chemicals are added to prompt the cells to go through normal development, up to the point where the chromosomes are most visible, prior to cell division. At this point, they are examined under a microscope and photographed. The photograph is used to sort the different sizes and shapes of chromosomes into pairs. In most cases of Down syndrome, one extra chromosome 21 will be revealed. The final result of such testing, with the photographed chromosomes paired and organized by shape and size, is called the individual’s karyotype.

Two types of prenatal tests are used to detect Down syndrome in a fetus: screening tests and diagnostic tests. Screening tests estimate the risk that a fetus has DS; diagnostic tests can tell whether the fetus actually has the condition.

Screening tests are cost-effective and easy to perform. But because they can’t give a definitive answer as to whether a baby has DS, these tests are used to help parents decide whether to have more diagnostic tests.

Diagnostic tests are about 99% accurate in detecting Down syndrome and other chromosomal abnormalities. However, because they’re performed inside the uterus, they are associated with a risk of miscarriage and other complications.

For this reason, invasive diagnostic testing previously was generally recommended only for women age 35 or older, those with a family history of genetic defects, or those who’ve had an abnormal result on a screening test.

However, the American College of Obstetrics and Gynecology (ACOG) now recommends that all pregnant women be offered screening with the option for invasive diagnostic testing for Down syndrome, regardless of age.

If you’re unsure about which test, if any, is right for you, your doctor or a genetic counselor can help you sort through the pros and cons of each.

Screening tests include:-
*Nuchal translucency testing. This test, performed between 11 and 14 weeks of pregnancy, uses ultrasound to measure the clear space in the folds of tissue behind a developing baby’s neck. (Babies with DS and other chromosomal abnormalities tend to accumulate fluid there, making the space appear larger.) This measurement, taken together with the mother’s age and the baby’s gestational age, can be used to calculate the odds that the baby has DS. Nuchal translucency testing is usually performed along with a maternal blood test.

*The triple screen or quadruple screen (also called the multiple marker test). These tests measure the quantities of normal substances in the mother’s blood. As the names imply, triple screen tests for three markers and quadruple screen includes one additional marker and is more accurate. These tests are typically offered between 15 and 18 weeks of pregnancy.

*Integrated screen. This uses results from first trimester screening tests (with or without nuchal translucency) and blood tests with second trimester quad screen to come up with the most accurate screening results.

*A genetic ultrasound. A detailed ultrasound is often performed at 18 to 20 weeks in conjunction with the blood tests, and it checks the fetus for some of the physical traits abnormalities associated with Down syndrome.

Diagnostic tests include:-
*Chorionic villus sampling (CVS). CVS involves taking a tiny sample of the placenta, either through the cervix or through a needle inserted in the abdomen. The advantage of this test is that it can be performed during the first trimester, between 8 and 12 weeks. The disadvantage is that it carries a slightly greater risk of miscarriage as compared with amniocentesis and has other complications.

*Amniocentesis. This test, performed between 15 and 20 weeks of pregnancy, involves the removal of a small amount of amniotic fluid through a needle inserted in the abdomen. The cells can then be analyzed for the presence of chromosomal abnormalities. Amniocentesis carries a small risk of complications, such as preterm labor and miscarriage.

*Percutaneous umbilical blood sampling (PUBS). Usually performed after 20 weeks, this test uses a needle to retrieve a small sample of blood from the umbilical cord. It carries risks similar to those associated with amniocentesis.
After a baby is born, if the doctor suspects DS based on the infant’s physical characteristics, a karyotype — a blood or tissue sample stained to show chromosomes grouped by size, number, and shape — can be performed to verify the diagnosis.

Treatment:-
No treatment is available to cure Down syndrome. Treatment is directed at addressing the individual concerns of a particular patient. For example, heart defects will many times require surgical repair, as will duodenal atresia. Many Down syndrome patients will need to wear glasses to correct vision. Patients with hearing impairment benefit from hearing aids.

At one time, most children with Down syndrome did not live past childhood. Many would often become sick from infections. Others would die from their heart problems or other problems they had at birth. Today, most of these health problems can be treated and most children who have it will grow into adulthood.

Medicines can help with infections and surgery can correct heart, stomach, and intestinal problems. If the person gets leukaemia, there are medical treatments that can be very successful. Someone with Down syndrome has a good chance of living to be 50 years old or more.

A new drug, referred to as a “smart drug,” has been receiving some attention in the treatment of Down syndrome patients. This drug, piracetam, has not been proven to increase intellectual ability, despite testimonials that have been receiving attention on television and the Internet. Piracetam has not been approved for use in the United States, although it is being sold via the Internet. The National Down Syndrome Society and the National Down Syndrome Congress do not recommend the use of this drug as of 2001.

While some decades ago, all Down syndrome children were quickly placed into institutions for lifelong care. Research shows very clearly that the best outlook for children with Down syndrome is a normal family life in their own home. This requires careful support and education of the parents and the siblings. It is a life-changing event to learn that a new baby has a permanent condition that will effect essentially all aspects of his or her development. Some community groups exist to help families deal with the emotional effects of this new information, and to help plan for the baby’s future. Schools are required to provide services for children with Down syndrome, sometimes in separate special education classrooms, and sometimes in regular classrooms (this is called mainstreaming or inclusion).

Prognosis:-
The prognosis in Down syndrome is quite variable, depending on the types of complications (heart defects, susceptibility to infections, development of leukemia) of each individual baby. The severity of the retardation can also vary significantly. Without the presence of heart defects, about 90% of children with Down syndrome live into their teens. People with Down syndrome appear to go through the normal physical changes of aging more rapidly, however. The average age of death for an individual with Down syndrome is about 50–55 years.

Still, the prognosis for a baby born with Down syndrome is better than ever before. Because of modern medical treatments, including antibiotics to treat infections and surgery to treat heart defects and duodenal atresia, life expectancy has greatly increased. Community and family support allows people with Down syndrome to have rich, meaningful relationships. Because of educational programs, some people with Down syndrome are able to hold jobs.

Men with Down syndrome appear to be uniformly sterile (meaning that they are unable to have offspring). Women with Down syndrome, however, are fully capable of having babies. About 50% of these babies, however, will also be born with Down syndrome.

Prevention:-
Efforts at prevention of Down syndrome are aimed at genetic counseling of couples who are preparing to have babies. A counselor needs to inform a woman that her risk of having a baby with Down syndrome increases with her increasing age. Two types of testing is available during a pregnancy to determine if the baby being carried has Down syndrome.

Screening tests are used to estimate the chance that an individual woman will have a baby with Down syndrome. At 14–17 weeks of pregnancy, measurements of a substance called AFP (alpha-fetoprotein) can be performed. AFP is normally found circulating in the blood of a pregnant woman, but may be unusually high or low with certain disorders. Carrying a baby with Down syndrome often causes AFP to be lower than normal. This information alone, or along with measurements of two other hormones, is considered along with the mother’s age to calculate the risk of the baby being born with Down syndrome. These results are only predictions, and are only correct about 60% of the time.

The only way to definitively establish (with about 98–99% accuracy) the presence or absence of Down syndrome in a developing baby, is to test tissue from the pregnancy itself. This is usually done either by amniocentesis or chorionic villus sampling (CVS). In amniocentesis, a small amount of the fluid in which the baby is floating is withdrawn with a long, thin needle. In chorionic villus sampling, a tiny tube is inserted into the opening of the uterus to retrieve a small sample of the placenta (the organ that attaches the growing baby to the mother via the umbilical cord, and provides oxygen and nutrition). Both amniocentesis and CVS allow the baby’s own karyotype to be determined. A couple must then decide whether to use this information in order to begin to prepare for the arrival of a baby with Down syndrome, or to terminate the pregnancy.

Once a couple has had one baby with Down syndrome, they are often concerned about the likelihood of future offspring also being born with the disorder. Most research indicates that this chance remains the same as for any woman at a similar age. However, when the baby with Down syndrome has the type that results from a translocation, it is possible that one of the two parents is a carrier of that defect. A carrier “carries” the genetic defect, but does not actually have the disorder. When one parent is a carrier of a translocation, the chance of future offspring having Down syndrome is greatly increased. The specific risk will have to be calculated by a genetic counselor.

Research:-
Main article: Research of Down syndrome-related genes
Down syndrome is “a developmental abnormality characterized by trisomy of human chromosome 21″ (Nelson 619). The extra copy of chromosome-21 leads to an over expression of certain genes located on chromosome-21.

Research by Arron et al shows that some of the phenotypes associated with Down Syndrome can be related to the dysregulation of transcription factors (596), and in particular, NFAT. NFAT is controlled in part by two proteins, DSCR1 and DYRK1A; these genes are located on chromosome-21 (Epstein 582). In people with Down Syndrome, these proteins have 1.5 times greater concentration than normal (Arron et al. 597). The elevated levels of DSCR1 and DYRK1A keep NFAT primarily located in the cytoplasm rather than in the nucleus, preventing NFATc from activating the transcription of target genes and thus the production of certain proteins (Epstein 583).

This dysregulation was discovered by testing in transgenic mice that had segments of their chromosomes duplicated to simulate a human chromosome-21 trisomy (Arron et al. 597). A test involving grip strength showed that the genetically modified mice had a significantly weaker grip, much like the characteristically poor muscle tone of an individual with Down Syndrome (Arron et al. 596). The mice squeezed a probe with a paw and displayed a .2 newton weaker grip (Arron et al. 596). Down syndrome is also characterized by increased socialization. When modified and unmodified mice were observed for social interaction, the modified mice showed as much as 25% more interactions as compared to the unmodified mice (Arron et al. 596).

The genes that may be responsible for the phenotypes associated may be located proximal to 21q22.3. Testing by Olson et al. in transgenic mice show the duplicated genes presumed to cause the phenotypes are not enough to cause the exact features. While the mice had sections of multiple genes duplicated to approximate a human chromosome-21 triplication, they only showed slight craniofacial abnormalities (688-690). The transgenic mice were compared to mice that had no gene duplication by measuring distances on various points on their skeletal structure and comparing them to the normal mice (Olson et al. 687). The exact characteristics of Down Syndrome were not observed, so more genes involved for Down Syndrome phenotypes have to be located elsewhere.

Reeves et al, using 250 clones of chromosome-21 and specific gene markers, were able to map the gene in mutated bacteria. The testing had 99.7% coverage of the gene with 99.9995% accuracy due to multiple redundancies in the mapping techniques. In the study 225 genes were identified (311-313).

The search for major genes that may be involved in Down syndrome symptoms is normally in the region 21q21–21q22.3. However, studies by Reeves et al. show that 41% of the genes on chromosome-21 have no functional purpose, and only 54% of functional genes have a known protein sequence. Functionality of genes was determined by a computer using exon prediction analysis (312). Exon sequence was obtained by the same procedures of the chromosome-21 mapping.

Research has led to an understanding that two genes located on chromosome-21, that code for proteins that control gene regulators, DSCR1 and DYRK1A can be responsible for some of the phenotypes associated with Down Syndrome. DSCR1 and DYRK1A cannot be blamed outright for the symptoms; there are a lot of genes that have no known purpose. Much more research would be needed to produce any appropriate or ethically acceptable treatment options.

Recent use of transgenic mice to study specific genes in the Down syndrome critical region has yielded some results. APP is an Amyloid beta A4 precursor protein. It is suspected to have a major role in cognitive difficulties. Another gene, ETS2 is Avian Erythroblastosis Virus E26 Oncogene Homolog 2. Researchers have “demonstrated that over-expression of ETS2 results in apoptosis. Transgenic mice over-expressing ETS2 developed a smaller thymus and lymphocyte abnormalities, similar to features observed in Down syndrome.”

Vitamin supplements, in particular supplemental antioxidants and folinic acid, have been shown to be ineffective in the treatment of Down syndrome.

Sociological and cultural aspects:-
Advocates for people with Down syndrome point to various factors, such as additional educational support and parental support groups to improve parenting knowledge and skills. There are also strides being made in education, housing, and social settings to create environments which are accessible and supportive to people with Down syndrome. In most developed countries, since the early twentieth century many people with Down syndrome were housed in institutions or colonies and excluded from society. However, since the early 1960s parents and their organizations (such as MENCAP), educators and other professionals have generally advocated a policy of inclusion, bringing people with any form of mental or physical disability into general society as much as possible. In many countries, people with Down syndrome are educated in the normal school system; there are increasingly higher-quality opportunities to move from special (segregated) education to regular education settings.

Despite these changes, the additional support needs of people with Down syndrome can still pose a challenge to parents and families. Although living with family is preferable to institutionalization, people with Down syndrome often encounter patronizing attitudes and discrimination in the wider community.

The first World Down Syndrome Day was held on 21 March 2006. The day and month were chosen to correspond with 21 and trisomy respectively. It was proclaimed by European Down Syndrome Association during their European congress in Palma de Mallorca (febr. 2005). In the United States, the National Down Syndrome Society observes Down Syndrome Month every October as “a forum for dispelling stereotypes, providing accurate information, and raising awareness of the potential of individuals with Down syndrome.” In South Africa, Down Syndrome Awareness Day is held every October 20.[49] Organizations such as Special Olympics Hawaii provide year-round sports training for individuals with intellectual disabilities such as down syndrome.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
http://www.answers.com/topic/down-syndrome-diagnosis
http://kidshealth.org/parent/medical/genetic/down_syndrome.html
http://www.charliebrewersworld.com/page4.htm
http://en.wikipedia.org/wiki/Down_syndrome

Reblog this post [with Zemanta]
Categories
Featured

Talk About Genes

Diagram of the location of introns and exons w...Image via Wikipedia

[amazon_link asins=’0202020339,1608467279,1615194045,0691029059,0300198191,0226712125,1260053075,0691087504,1405131667′ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’82eeb0a0-1140-11e8-a1eb-ebab1993e2e4′]

People who are sick look at those who are well and wonder: Why am I ill? Why not them? Is it the environmental pollution? Or my diet? Perhaps it is the witches, curses or the evil eye. Maybe incantations and amulets will set things right.

Human genes are located on 23 pairs of chromosomes

Today, rapid scientific advance in microbiology has helped identify disease-causing organisms (bacteria and viruses) not visible to the naked eye. Biochemistry has helped locate the exact molecular level at which enzyme reactions become faulty and result in diseases. We also know now that most diseases have a genetic basis. People may have the same genotype or genetic configuration, but the expression of these genes in the body (the phenotype) may be different. This makes one’s response to disease different from another’s — some succumb to it while others don’t.

Genes are located on specific loci on chromosomes. We inherit 20,000-30,000 genes, located on 23 pairs of chromosomes, from our parents. Twenty-two of these are identical. The 23rd is the sex chromosome. If it is expressed as XX, the person is a female and if it is XY, the person is a male.

Abnormal genes that theoretically should cause disease can vary in their penetrability. A person may carry the gene and yet not express the disease. But he or she will, however, pass it to his or her children. The disease may suddenly manifest itself generations later, puzzling everyone as to why no one in the family has it. This is true of vitiligo (white patches), icthyosis (dry skin), psoriasis and other conditions.

A single defective gene can produce abnormalities in multiple organs. The gene causing osteogenesis imperfecta (where the fragile bones keep breaking) also causes deafness and defective teeth. Some gene positive individuals may have normal bones, but their joints may be abnormally mobile and hyper extensible. They are often advertised in circus acts as “rubber or plastic people”.

A defective gene may be dominant — that is, it expresses itself in all the people who carry it. Or it may be recessive and a person expresses the disease only if he or she has inadvertently been saddled with two defective genes, one from each parent. This is most likely to occur in communities where consanguinity (marrying a relative like a cousin or an uncle) is prevalent. This accounts for diseases like sickle cell disease and thalassaemia.

Some traits are X-linked and carried on the X chromosome. Females are protected as they have two copies of the X, one from the mother and the other from the father. Males get their X from their mother and their Y from their father. Unprotected by a normal chromosome, they express any disease caused by a defective X from the mother. Muscular dystrophy and haemophilia are X-linked diseases carried by apparently normal women and passed on to their sons.

Sex limited inheritance may be expressed only in one sex even if the inheritance is dominant. A typical example is premature baldness. Men are more likely to be bald even though women, too, may carry the gene. Women are protected until menopause by the female hormones. Sometimes an abnormality occurs in a child despite the parents being genetically normal. This occurs because of spontaneous changes or mutations during early embryonic development, with an injury — like a viral infection, medications or radiation — causing the changes. Eighty per cent of “circus dwarfs” fall in this category.

As cells age, the proteins comprising genes become faulty. The chromosomes themselves may develop deletions, translocations and abnormal attachments. Parents may then give birth to children with diseases like Down’s Syndrome.

Many diseases like high blood pressure, diabetes, heart disease and cancer have a “multifactorial inheritance”. Although the defective genes have been inherited, the disease manifests itself only when there is the required mix of environmental and genetic factors. Alcoholism and drug abuse are hereditary, but will not manifest themselves in a regimentalised, teetotal society where neither alcohol nor drugs is available.

Genes, chromosomes and their inheritance can be plotted and studied. Genetic screening can identify people at risk for a particular disorder. Testing is appropriate even before symptoms begin if there is a strong family history of the disorder. In the case of sickle cell anaemia, thalassaemia and breast cancer, it may help to identify asymptomatic people and may be life saving. Tests can be done for some diseases before birth (in utero) with maternal blood samples, chorionic villous sampling, or amniotic fluid or umbilical cord blood. Neonates with inborn errors of metabolism (IEM) can be diagnosed a few hours after birth. At this time it may be possible to initiate life-saving treatment.

Gene therapy is being studied. It involves the insertion of copies of normal genes, switching off faulty genes or stem cell transplantation and therapy. Science is progressing by leaps and bounds. Perhaps the day is not far when genetic diseases, too, will be a part of the past.

Sources: The Telegraph (Kolkata, India)

Zemanta Pixie
Categories
News on Health & Science

Bionic Eye ‘Blindness Cure Hope’

[amazon_link asins=’B000PGRBGA,B000RBE5TE,B004S5AC10,B005172AYQ,B01FNJP3X6,B001MA60PQ,B002RGOENO,B01KA3EBH4,B0016P2U6A’ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’3e2d1b1c-78d5-11e7-abae-09b227b78a00′]

A ‘bionic eye‘ may hold the key to returning sight to people left blind by a hereditary disease, experts believe.

………………………..click & see

………………………………The treatment is being tested in clinical trials

A team at London’s Moorfields Eye Hospital have carried out the treatment on the UK’s first patients as part of a clinical study into the therapy.

The artificial eye, connected to a camera on a pair of glasses, has been developed by US firm Second Sight.

It said the technique may be able to restore a basic level of vision, but experts warned it was still early days.

The trial aims to help people who have been made blind through retinitis pigmentosa, a group of inherited eye diseases that affects the retina.

The disease progresses over a number of years, normally after people have been diagnosed when they are children.

It is estimated between 20,000 to 25,000 are affected in the UK.

It is not known whether the treatment has helped the two patients to see and any success is only likely to be in the form of light and dark outlines, but doctors are optimistic.

Lyndon da Cruz, the eye surgeon who carried out the operations last week, said the treatment was “exciting”.

“The devices were implanted successfully in both patients and they are recovering well from the operations.”

Other patients across Europe and the US have also been involved in the trial.

Electronic

The bionic eye, known as Argus II, works via the camera which transmits a wireless signal to an ultra-thin electronic receiver and electrode panel that are implanted in the eye and attached to the retina.

The electrodes stimulate the remaining retinal nerves allowing a signal to be passed along the optic nerve to the brain.

David Head, chief executive of the British Retinitis Pigmentosa Society, said: “This treatment is very exciting, but it is still early days.

“There is currently no treatment for patients so this device and research into stem cells therapies offers the best hope.”

“This treatment is very exciting, but it is still early days” …. says David Head, of the British Retinitis Pigmentosa Society

CLICK TO SEE ALSO :->
Sight-saving injection approved

Woman ‘denied sight-save drugs’

NHS criticised on blindness cure

Man in NHS battle ‘to save sight’

Second Sight

British Retinis Pigmentosa Society

Sources:BBC NEWS:21st. April,’08

css.php