Categories
Herbs & Plants

Artemisia anomala

[amazon_link asins=’B013T861Y8,B004RZC0CK,B00QSJDK04,B01A2UNKOU’ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’a1fc4549-5828-11e7-ba71-5bb171f6b4a5′]

Botanical Name :Artemisia anomala
Family :Asteraceae
Genus: Artemisia
Species:A. anomala
Kingdom: Plantae
Order: Asterales

Common Chinese Names :Liu Ji Nu, Qi Hau

Habitat:Artemisia anomala is native to E. AsiaChina. It grows on the forest margins, roadsides, canyons, river banks, shrublands and slopes at levations of 200 – 1200 metres.

Description:
Artemisia anomala is a perennial herb, growing to 1 m (3ft 3in). It is in flower from Jul to November, and the seeds ripen from Aug to November. The flowers are hermaphrodite (have both male and female organs)Suitable for: light (sandy), medium (loamy) and heavy (clay) soils. Suitable pH: acid, neutral and basic (alkaline) soils. It can grow in semi-shade (light woodland) or no shade. It prefers moist soil. CLICK & SEE THE PICTURES
Medicinal Uses:
Used externally in the treatment of burns and inflamed skin. The plant is used for making antiphlogistic and antitoxin drugs. It is very effective for bloating, all types of burnes, indigestion, blood clots. fractures, internal injury, bruises, high blood pressure, menses scanty & ulcers.
Known Hazards: Avoid during pregnancy & breastfeeding. Overdose may cause vomiting & diarrhea.

Disclaimer : The information presented herein is intended for educational purposes only. Individual results may vary, and before using any supplement, it is always advisable to consult with your own health care provi

Resources:
https://vi.wikipedia.org/wiki/Artemisia_anomala
http://herbpathy.com/Uses-and-Benefits-of-Artemisia-Anomala-Cid5102
http://www.pfaf.org/user/Plant.aspx?LatinName=Artemisia+anomala

Advertisements
Categories
Ailmemts & Remedies

Hemolytic Uremic Syndrome (HUS)

Alternative names:  Haemolytic-uraemic syndrome, HUS

Definition:
Hemolytic uremic syndrome, or HUS, is a kidney condition that happens when red blood cells are destroyed and block the kidneys‘ filtering system. Red blood cells contain hemoglobin—an iron-rich protein that gives blood its red color and carries oxygen from the lungs to all parts of the body.

CLICK & SEE THE PICTURES

When the kidneys and glomeruli—the tiny units within the kidneys where blood is filtered—become clogged with the damaged red blood cells, they are unable to do their jobs. If the kidneys stop functioning, a child can develop acute kidney injury—the sudden and temporary loss of kidney function. Hemolytic uremic syndrome is the most common cause of acute kidney injury in children.

It is a disease characterized by hemolytic anemia (anemia caused by destruction of red blood cells), acute kidney failure (uremia), and a low platelet count (thrombocytopenia). It predominantly, but not exclusively, affects children. Most cases are preceded by an episode of infectious, sometimes bloody, diarrhea acquired as a foodborne illness or from a contaminated water supply and caused by E. coli O157:H7, although Shigella, Campylobacter and a variety of viruses have also been implicated. It is now the most common cause of acquired acute renal failure in childhood. It is a medical emergency and carries a 5–10% mortality; of the remainder, the majority recover without major consequences but a small proportion develop chronic kidney disease and become reliant on renal replacement therapy.

The kidneys are two bean-shaped organs, each about the size of a fist. They are located just below the rib cage, one on each side of the spine. Every day, the two kidneys filter about 120 to 150 quarts of blood to produce about 1 to 2 quarts of urine, composed of wastes and extra fluid. Children produce less urine than adults and the amount produced depends on their age. The urine flows from the kidneys to the bladder through tubes called ureters. The bladder stores urine. When the bladder empties, urine flows out of the body through a tube called the urethra, located at the bottom of the bladder.

Symptoms:
STEC-HUS occurs after ingestion of a strain of bacteria, usually types of E. coli, that expresses verotoxin (also called Shiga-like toxin). Bloody diarrhea typically follows. HUS develops about 5–10 days after onset of diarrhea, with decreased urine output (oliguria), blood in the urine (hematuria), kidney failure, thrombocytopenia (low levels of platelets) and destruction of red blood cells (microangiopathic hemolytic anemia). Hypertension is common. In some cases, there are prominent neurologic changes.

A child with hemolytic uremic syndrome may develop signs and symptoms similar to those seen with gastroenteritis—an inflammation of the lining of the stomach, small intestine, and large intestine—such as

*vomiting
*bloody diarrhea
*abdominal pain
*fever and chills
*headache

As the infection progresses, the toxins released in the intestine begin to destroy red blood cells. When the red blood cells are destroyed, the child may experience the signs and symptoms of anemia—a condition in which red blood cells are fewer or smaller than normal, which prevents the body’s cells from getting enough oxygen.

Signs and symptoms of anemia may include:-

*fatigue, or feeling tired
*weakness
*fainting
*paleness

As the damaged red blood cells clog the glomeruli, the kidneys may become damaged and make less urine. When damaged, the kidneys work harder to remove wastes and extra fluid from the blood, sometimes leading to acute kidney injury.

Other signs and symptoms of hemolytic uremic syndrome may include bruising and seizures.

When hemolytic uremic syndrome causes acute kidney injury, a child may have the following signs and symptoms:

*edema—swelling, most often in the legs, feet, or ankles and less often in the hands or face
*albuminuria—when a child’s urine has high levels of albumin, the main protein in the blood
*decreased urine output
*hypoalbuminemia—when a child’s blood has low levels of albumin
*blood in the urine

Causes:
A number of things can cause hemolytic uremic syndrome, but the most common cause — particularly in children — is an infection with a specific strain of E. coli, usually the strain known as O157:H7. However, other strains of E. coli have been linked to hemolytic uremic syndrome, too.

Normally, harmless strains, or types, of E. coli are found in the intestines and are an important part of digestion. However, if a child becomes infected with the O157:H7 strain of E. coli, the bacteria will lodge in the digestive tract and produce toxins that can enter the bloodstream. The toxins travel through the bloodstream and can destroy the red blood cells. E. coli O157:H7 can be found in:

*Contaminated meat or produce
*Swimming pools or lakes contaminated with feces
*undercooked meat, most often ground beef
*unpasteurized, or raw, milk
*unwashed, contaminated raw fruits and vegetables
*contaminated juice

Less common causes, sometimes called atypical hemolytic uremic syndrome, can include:-

*taking certain medications, such as chemotherapy
*having other viral or bacterial infections
*inheriting a certain type of hemolytic uremicsyndrome that runs in families

Children who are more likely to develop hemolytic uremic syndrome include those who
are younger than age 5 and have been diagnosedwith an E. coli O157:H7 infection

*have a weakened immune system
*have a family history of inherited hemolyticuremic syndrome
*Hemolytic uremic syndrome occurs in about two out of every 100,000 children.

Most people who are infected with E. coli, even the more dangerous strains, won’t develop hemolytic uremic syndrome. It’s also possible for hemolytic uremic syndrome to follow infection with other types of bacteria.

In adults, hemolytic uremic syndrome is more commonly caused by other factors, including:

*The use of certain medications, such as quinine (an over-the-counter muscle cramp remedy), some chemotherapy drugs, the immunosuppressant medication cyclosporine (Neoral, Sandimmune) and anti-platelet medications

*Pregnancy

*Certain infections, such as HIV/AIDS or an infection with the pneumococcal bacteria

*Genes, which can be a factor because a certain type of HUS — atypical hemolytic uremic syndrome — may be passed down from your parents

The cause of hemolytic uremic syndrome in adults is often unknown

Diagnosis:
The Doctor diagnoses hemolytic uremic syndrome with

*a medical and family history
*a physical exam
*urine tests
*a blood test
*a stool test
*kidney biopsy

The similarities between HUS, aHUS, and TTP make differential diagnosis essential. All three of these systemic TMA-causing diseases are characterized by thrombocytopenia and microangiopathic hemolysis, plus one or more of the following: neurological symptoms (e.g., confusion, cerebral convulsions, seizures); renal impairment (e.g., elevated creatinine, decreased estimated glomerular filtration rate [eGFR], abnormal urinalysis ); and gastrointestinal (GI) symptoms (e.g., diarrhea, nausea/vomiting, abdominal pain, gastroenteritis).The presence of diarrhea does not exclude aHUS as the etiology of TMA, as 28% of patients with aHUS present with diarrhea and/or gastroenteritis. First diagnosis of aHUS is often made in the context of an initial, complement-triggering infection, and Shiga-toxin has also been implicated as a trigger that identifies patients with aHUS. Additionally, in one study, mutations of genes encoding several complement regulatory proteins were detected in 8 of 36 (22%) patients diagnosed with STEC-HUS. However, the absence of an identified complement regulatory gene mutation does not preclude aHUS as the etiology of the TMA, as approximately 50% of patients with aHUS lack an identifiable mutation in complement regulatory genes.

Diagnostic work-up supports the differential diagnosis of TMA-causing diseases. A positive Shiga-toxin/EHEC test confirms an etiological cause for STEC-HUS, and severe ADAMTS13 deficiency (i.e., ?5% of normal ADAMTS13 levels) confirms a diagnosis of TTP

Complications:
Most children who develop hemolytic uremic syndrome and its complications recover without permanent damage to their health.1
However, children with hemolytic uremic syndrome may have serious and sometimes life-threatening complications, including

*acute kidney injury
*high blood pressure
*blood-clotting problems that can lead to bleeding
*seizures
*heart problems
*chronic, or long lasting, kidney disease
*stroke
*coma

Treatment:
The Doctor will treat a child’s urgent symptoms and try to prevent complications by

*observing the child closely in the hospital
*replacing minerals, such as potassium and salt, and fluids through an intravenous (IV) tube
*giving the child red blood cells and platelets—cells in the blood that help with clotting—through an IV
*giving the child IV nutrition
*treating high blood pressure with medications

Treating Acute Kidney Injury:
If necessary,the Doctor will treat acute kidney injury with dialysis—the process of filtering wastes and extra fluid from the body with an artificial kidney. The two forms of dialysis are hemodialysis and peritoneal dialysis. Most children with acute kidney injury need dialysis for a short time only.

Treating Chronic Kidney Disease:
Some children may sustain significant kidney damage that slowly develops into CKD. Children who develop CKD must receive treatment to replace the work the kidneys do. The two types of treatment are dialysis and transplantation.

In most cases, The Doctor treat CKD with a kidney transplant. A kidney transplant is surgery to place a healthy kidney from someone who has just died or a living donor, most often a family member, into a person’s body to take over the job of the failing kidney. Though some children receive a kidney transplant before their kidneys fail completely, many children begin with dialysis to stay healthy until they can have a transplant. click to know more

Prevention:

Hemolytic uremic syndrome, or HUS, is a kidney condition that happens when red blood cells are destroyed and block the kidneys’ filtering system.
The most common cause of hemolytic uremic syndrome in children is an Escherichia coli (E. coli) infection of the digestive system.
Normally, harmless strains, or types, of E. coli are found in the intestines and are an important part of digestion. However, if a child becomes infected with the O157:H7 strain of E. coli, the bacteria will lodge in the digestive tract and produce toxins that can enter the bloodstream.
A child with hemolytic uremic syndrome may develop signs and symptoms similar to those seen with gastroenteritis, an inflammation of the lining of the stomach, small intestine, and large intestine.

Most children who develop hemolytic uremic syndrome and its complications recover without permanent damage to their health.
Some children may sustain significant kidney damage that slowly develops into chronic kidney disease (CKD).

Parents and caregivers can help prevent childhood hemolytic uremic syndrome due to E. coli O157:H7 by

*avoiding unclean swimming areas
*avoiding unpasteurized milk, juice, and cider
*cleaning utensils and food surfaces often
*cooking meat to an internal temperature of at least 160° F
*defrosting meat in the microwave or refrigerator
*keeping children out of pools if they have had diarrhea
*keeping raw foods separate
*washing hands before eating
*washing hands well after using the restroom and after changing diapers

When a child is taking medications that may cause hemolytic uremic syndrome, it is important that the parent or caretaker watch for symptoms and report any changes in the child’s condition to the Doctor as soon as possible.

Prognosis:
Acute renal failure occurs in 55-70% of patients with STEC-HUS, although up to 70-85% recover renal function. Patients with aHUS generally have poor outcomes, with up to 50% progressing to ESRD or irreversible brain damage; as many as 25% die during the acute phase. However, with aggressive treatment, more than 90% of patients survive the acute phase of HUS, and only about 9% may develop ESRD. Roughly one-third of persons with HUS have abnormal kidney function many years later, and a few require long-term dialysis. Another 8% of persons with HUS have other lifelong complications, such as high blood pressure, seizures, blindness, paralysis, and the effects of having part of their colon removed. The overall mortality rate from HUS is 5-15%. Children and the elderly have a worse prognosis.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
http://kidney.niddk.nih.gov/KUDiseases/pubs/childkidneydiseases/hemolytic_uremic_syndrome/
http://en.wikipedia.org/wiki/Hemolytic-uremic_syndrome
http://www.mayoclinic.org/diseases-conditions/hemolytic-uremic-syndrome/basics/causes/con-20029487

Related articles

Categories
Therapetic treatment

Chemotherapy

[amazon_link asins=’1587613441,B004BH15K2,1573246751,1935864335,1284079872,B005JDRQBY,B01MT65BVE,B0052O7B6U,1572246219′ template=’ProductCarousel’ store=’finmeacur-20′ marketplace=’US’ link_id=’b808e4b1-05a6-11e7-851f-571df6c5acd8′]

Definition:
Chemotherapy is a medical treatment that is needed in order to stop cancer cells from growing and its tracks. Chemotherapy is extremely effective in treating cancer. It is even more effective when it is used with other treatments like radiotherapy. It is also sometimes needed to relief the symptoms, and it is design to give a longer life by causing the disease to go into remission-the stage in which there are no active symptoms.  Chemotherapy works differently than surgery or radiotherapy – two other treatments designed to fight against the cancer as well. Chemotherapy drugs travel throughout the whole body. This is important because it allows the durgs to reach part of the body where the cancer cells may have spread out. In combination with surgery means that fewer surgical procedures need to be done. Follow-up surgery can often be avoided if chemotherapy is used.

click to see...>…...(01)..…(1)………..(2).……...(3).……...(4)…..

On the other hand, radiation therapy, or radiotherapy, is the use of high energy rays to treat such disease. Is it very important to know that radiation causes damage to cancer cells, so they stop growing. With each treatment, more of the cells die and the tumor shrinks. The dead cells break down and are carried away by the blood, eventually passing out of the body. Normal cells that are also exposed to the radiation process start to repair themselves afterwards, and the process lasts just a few hours. You might be concerned that radiation hurts, but is actually quite painless. Also, in case you are wondering, the radiation gets into your body and then passes out -it does not cause you to become radioactive.

To understand how chemotherapy works, it is helpful to know some basics about the cells of the body. Everything in your body is made up of cells. A group of cells is called tissue and tissues make up all the organs, the major structures of your body. Tissue stays healthy because cells grow and reproduce, new cells replace the ones that are damaged because of injury. This means that a combination of drugs may be used to attack cancer cells so that each drug can attack the cells in a different phase.

Cancer is a disease in which abnormal cells in the body grow and multiply at a very high rate. There are more than 100 specific types of cancer cells. Cancer also may involve the spread of abnormal cells around the body. Normal cells in our body grow, divide, and die in a way that maintains health and does not damage the body. A majority for the cancer cases are due to age issues because of the fact that in adulthood your cells divide only to replace worn-out or dying cells, or in other cases, to repair injuries. Cells make up all living tissue and stronger throughout your childhood. But cancer cells continue to grow and divide, even though they are no serving in any of the vital functions, and can spread to other parts in the body. These cells clump together and form tumors (lumps) that may destroy normal tissue. If cells break off from a tumor, they can travel  throughout the blood stream or the lymphatic system. When they settle in and grow; eventually, forming other tumors. When a tumor spreads out to a new place, it is called metastasis. Even when cancer spreads, it’s called by the name of the body where it originally started and developed. Leukemia, a type of cancer growing, does not usually form a tumor, it is an exception to the rule. The cancer cells get into the blood and the organs that make blood bone narrow, then they circulate through other tissues, where they eventually develop and grow.

Chemotherapy damages cancer cells, but it also can damage normal cells. Damage to these cells is what causes the side effects of chemotherapy treatment. For instance normal cells that divide quickly, such as blood cells and the cells of hair follicles, are more likely to be damaged by chemotherapy medications. In other words, in healthy cells the damage does not last, and many only happen on the days you are actually taking the drugs. Chemotherapy is usually given is several cycles. Depending on the drug and combination, it may last to a few hours, days, or weeks.

How Chemotherapy Is Given
Just as other medicines can be taken in various forms, there are several ways to get chemotherapy. In most cases, it’s given intravenously into a vein, also referred to as an IV. An IV is a tiny tube inserted into a vein through the skin, usually in the arm. The IV is attached to a bag that holds the medicine. The chemo medicine flows from the bag into the vein, which puts the medicine into the bloodstream. Once the medicine is in the blood, it can travel through the body and attack cancer cells.

Sometimes, a permanent IV called a catheter is placed under the skin into a larger blood vessel of the upper chest. That way, a child can get chemotherapy and other medicines through the catheter without having to always use a vein in the arm. The catheter remains under the skin until all the cancer treatment is completed. It can also be used to obtain blood samples and for other treatments, such as blood transfusions, without repeated needle sticks.

Chemo also can be:

•taken as a pill, capsule, or liquid that is swallowed
•given by injection into a muscle or the skin
•injected into spinal fluid through a needle inserted into a fluid-filled space in the lower spine (below the spinal cord)

Chemotherapy is sometimes used along with other cancer treatments, such as radiation therapy, surgery, or biological therapy (the use of substances to boost the body’s immune system while fighting cancer).

Lots of kids and teens receive combination therapy, which is the use of two or more cancer-fighting drugs. In many cases, combination therapy lessens the chance that a child’s cancer will become resistant to one type of drug — and improves the chances that the cancer will be cured.

When and Where Chemotherapy Is Given
Depending on the method used to administer chemotherapy, it may be given at a hospital, cancer treatment center, doctor’s office, or at home. Many kids receive chemotherapy on an outpatient basis at a clinic or hospital. Others may need to be hospitalized to monitor or treat side effects.

Kids may receive chemotherapy every day, every week, or every month. Doctors sometimes use the term “cycles” to describe a child’s chemotherapy because the treatment periods are interspersed with periods of rest so the child can recover and regain strength.

Dosage :
Dosage of chemotherapy can be difficult: If the dose is too low, it will be ineffective against the tumor, whereas, at excessive doses, the toxicity (side effects, neutropenia) will be intolerable to the patient. This has led to the formation of detailed “dosing schemes” in most hospitals, which give guidance on the correct dose and adjustment in case of toxicity. In immunotherapy, they are in principle used in smaller dosages than in the treatment of malignant diseases.

In most cases, the dose is adjusted for the patient’s body surface area, a measure that correlates with blood volume. The BSA is usually calculated with a mathematical formula or a nomogram, using a patient’s weight and height, rather than by direct measurement.

Side Effects:
Although chemo often effectively damages or eliminates cancer cells, it also can damage normal, healthy cells. And this can lead to some uncomfortable side effects.

The good news is that most side effects are temporary — as the body’s normal cells recover, the side effects gradually go away.

Cancer treatment is multifaceted — that is, patients receive a lot of care (i.e., fluid and nutrition support, transfusion support, physical therapy, and medicines) to help them tolerate the treatments and treat or prevent side effects such as nausea and vomiting.

It’s difficult to pinpoint which side effects a  patient might experience, how long they’ll last, and when they’ll end.

The common side effects are:
1.Fatigue
2.Discomfort and Pain
3.Skin Damage or Changes
4.Hair Loss and Scalp Sensitivity
5.Mouth, Gum, and Throat Sores
6.Gastrointestinal Problems

Other side effects are:
•Anemia
•Blood Clotting
•Increased Risk of Infection

Chemo may cause a reduction in white blood cells, which are part of the immune system and help the body to fight infection. Therefore,  the patient  is more vulnerable to developing infections during and after chemo.

•Long-Term Side Effects
Chemotherapy can cause long-term side effects (sometimes called late effects), depending on the type and dose of chemotherapy and whether it was combined with radiation. These effects may involve any organ, including the heart, lungs, brain, kidneys, liver, thyroid gland, and reproductive organs. Some types of chemotherapy drugs may also increase the risk of cancer later in life. Receiving chemo during childhood also may place some kids at risk for delayed growth and cognitive development, depending on the child’s age, the type of drug used, the dosage, and whether chemotherapy was used in addition to radiation therapy.

Newer anticancer drugs act directly against abnormal proteins in cancer cells; this is termed targeted therapy and is technically not chemotherapy.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
http://englendd.wordpress.com/2011/06/05/chemotherapy/
http://kidshealth.org/parent/system/ill/chemotherapy.html#
http://en.wikipedia.org/wiki/Chemotherapy

http://medicineworld.org/cancer/lead/11-2008/concurrent-chemotherapy-in-lung-cancer.html

Enhanced by Zemanta
Categories
Ailmemts & Remedies

Lumps and Bumps

PapillomaMost lumps are benign, but it is very important to be sure exactly what they are and find out if they need any  treatment.

Benign vs malignant :……....click & see
Lumps are normally referred to as tumours, and they may be benign or malignant. In a tumour, one particular type of cell (such as a glandular, fat or muscle cell) has escaped the normal controls on growth and started to multiply.

The most important characteristic is whether these tumour cells can invade other adjacent cell types, and spread around the body (i.e. they are malignant tumours) or not (in which case they are benign).

Benign tumours:-
Benign tumours include :

•Cysts: lumps filled with fluid. Common types include sebaceous cysts on the skin, filled with greasy sebum, and ovarian cysts….
Nodules: formed in inflammatory conditions such as arthritis, sarcoid and polyarteritis…….
•Lipomas: lumps of fat cells….
Fibromas and fibroademonas: lumps of fibrous or fibrous and glandular tissue…..
Haematoma: lump formed by blood escaping into the tissues – simply a large bruise…..
Haemangioma: lump formed by extra growth of blood vessels……
•Papilloma: formed from skin or internal membrane cells, for example warts….

Benign tumours do not invade or spread. They can grow quite large without causing problems, although that doesn’t mean they’re totally harmless because their growth may start to damage the other tissues or organs around them.

This is a particular problem with a type of brain tumour called a meningioma, which grows from cells in the membranes that surround the brain (the meninges). Although benign, the pressure within the skull from the growing meningioma can cause severe headaches and may be life threatening if the tumour is not removed.

Benign tumours can cause others problems, from simply looking unsightly to releasing excess hormones.

Malignant tumours:-
Malignant tumours are also known as cancers. They invade the tissues around them and spread to other parts of the body by sending out cancer cells into the lymphatic system or through the blood stream.

These cells are deposited in other areas of the body, particularly the lungs, liver, brain and bones, to start ‘secondary’ tumours (also called metastases) at the new sites. Most malignant tumours are life threatening.

Breast tumours:-
•Benign: mostly happens at younger age. Usually a round smooth lump with a border that feels separate to the rest of the breast. Changes may occur in the lump with the menstrual cycle, being more obvious just before a period. The lump may be tender.
Malignant: mostly happens at older age. Usually a craggy or irregular lump, which may be seen to tether the skin There may be other symptoms such as discharge from the nipple. There may be a family history of breast cancer especially if at a young age.
Women are advised to be on the look out for lumps in their breasts. However, among younger women at least, lumps are far more likely to be benign – in women under 40, more than nine out of ten breast lumps are benign. But these lumps still cause a lot of anxiety until they are sorted out.

The most common benign breast conditions are fibrocystic change, benign breast tumours and breast inflammation. These are common problems, in fact fibrocystic change used to be known as fibrocystic disease but, as it affects more than 50 per cent of women at some point, it was thought it could no longer be considered a disease.

Fibroadenomas (sometimes called breast mice because they can be moved around) are particularly common in women in their 20s or 30s. They are benign and not cancerous.

In most cases these lumps are quite harmless, although now and then they may cause troublesome symptoms such as tenderness (especially as many are influenced by hormone levels and tend to get more swollen and painful along with other menstrual symptoms).

Malignant breast tumours mostly occur in older women, and tend to be accompanied by other symptoms such as discharge from the nipple. The lump may feel craggy or irregular.

Women who have a family history of breast cancer, especially breast cancer at a young age, have an increased risk of malignant tumours.

Is it cancerous?
Sometimes it’s fairly clear that a lump is either benign or malignant, but further tests may be required, including x-rays, ultrasound or biopsy. Often the best way to get an answer is to remove the whole lump and send it to the laboratory for analysis.

Benign lumps may not need to be removed but this is usually the most effective way to reassure someone because, whatever the problem, it’s gone

If you find a lump
•Get a doctor’s opinion – no one minds checking hundreds of harmless lumps if it means that one malignant or cancerous lump is caught early.
•Don’t hide a lump or fret silently about it – if it does prove to be malignant the sooner it’s dealt with the greater the chance of cure.
•Bear in mind that most lumps, especially in younger people, are benign or relatively harmless.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose

Source:BBC Health

Enhanced by Zemanta
Categories
Ailmemts & Remedies

Haemochromatosis

Definition:
Haemochromatosis is a disease caused by excess iron in the body.

Iron is needed in the diet to maintain good health, particularly for making red blood cells that carry oxygen around the body. These red blood cells contain large amounts of iron.

Lack of iron can cause anaemia, but excessive iron is toxic. The body has few ways of disposing of unwanted iron, so it builds up in tissues causing damage and disease.

Haemochromatosis – or genetic haemochromatosis (GH) – is a disorder that causes the body to absorb an excessive amount of iron from the diet.

CLICK & SEE

We can only use a limited amount of iron and any excess is deposited around the body. This accumulates mainly in the liver, but can also affect the heart, pancreas and pituitary gland, damaging these vital body organs and resulting in a deterioration of their functional capacity.

Haemochromatosis is more common in Caucasian or white populations, with about 1 in 300 to 1 in 400 affected. About half that number are affected in black populations.

Men are more likely to have hereditary haemochromatosis and suffer from it at an earlier age, as women regularly lose iron in menstruation or use stores in pregnancy.

Symptoms:
Although haemochromatosis and the potential for the condition to cause problems is present from birth, symptoms don’t usually become apparent until middle age.

CLICK & SEE

Common symptoms that might be noticed then include:

•weakness, tiredness and lack of energy
•joint pain and stiffness – particularly in the hands and fingers
•a tanned or bronzed appearance of the skin
•impotence in men
•shrinking of testicles
•weight loss
•abdominal pain
.
Later, more serious symptoms may develop including:

•diabetes
•arthritis
•heart problems
•enlargement or damage to the liver

Clinical presentation:
Organs commonly affected by haemochromatosis are the liver, heart, and endocrine glands.

Haemochromatosis may present with the following clinical syndromes:

*Cirrhosis of the liver
*Diabetes due to pancreatic islet cell failure
*Cardiomyopathy
*Arthritis (iron deposition in joints)
*Testicular failure
*Tanning of the skin

Causes:
The causes can be distinguished between primary cases (hereditary or genetically determined) and less frequent secondary cases (acquired during life). People of Celtic (Irish, Scottish, Welsh) origin have a particularly high incidence of whom about 10% are carriers of the gene and 1% sufferers from the condition.

Primary haemochromatosis:
The fact that most cases of haemochromatosis were inherited was well known for most of the 20th century, though they were incorrectly assumed to depend on a single gene. The overwhelming majority actually depend on mutations of the HFE gene discovered in 1996, but since then others have been discovered and sometimes are grouped together as “non-classical hereditary haemochromatosis”, “non-HFE related hereditary haemochromatosis”, or “non-HFE haemochromatosis

It is thought to be mainly caused by a mutation of a gene called HFE, which probably allows excess iron to be absorbed from the diet. This mutation is known as C282Y and to develop haemochromatosis you usually need two genes (one from each parent) to be C282Y.

However, not everyone with the mutation may develop the disease, and it may occur if only one C282Y gene is present.

Confusingly, another mutation labelled H63D elsewhere on the HFE gene may occur alone or with C282Y and also influence iron levels.

Other rare mutations may give rise to haemochromatosis, especially in children.

Secondary haemochromatosis:
*Severe chronic haemolysis of any cause, including intravascular haemolysis and ineffective erythropoiesis (haemolysis within the bone marrow).
*Multiple frequent blood transfusions (either whole blood or just red blood cells), which are usually needed either by individuals with hereditary anaemias (such as beta-thalassaemia major, sickle cell anaemia, and Diamond–Blackfan anaemia) or by older patients with severe acquired anaemias such as in myelodysplastic syndromes.
*Excess parenteral iron supplements, such as can acutely happen in iron poisoning
*Excess dietary iron
*Some disorders do not normally cause haemochromatosis on their own, but may do so in the presence of other predisposing factors. These include cirrhosis (especially related to alcohol abuse), steatohepatitis of any cause, porphyria cutanea tarda, prolonged haemodialysis, post-portacaval shunting.

Risk Factors:
The onset of hereditary haemochromatosis usually occurs between the ages of 30 and 60 as the build up of iron takes years.

However, a rapid form of the disease does affect children. If left untreated excess iron builds up in the organs especially the liver, heart and pancreas. This may cause heart or liver failure, which can be fatal.

Diagnosis:
There are several methods available for diagnosing and monitoring iron loading including:

*Serum ferritin
*Liver biopsy
*HFE
*MRI

Serum ferritin is a low-cost, readily available, and minimally invasive method for assessing body iron stores. However, the major problem with using it as an indicator of iron overload is that it can be elevated in a range of other medical conditions unrelated to iron levels including infection, inflammation, fever, liver disease, renal disease, and cancer. Also, total iron binding capacity may be low, but can also be normal.

The standard of practice in diagnosis of hemochromatosis was recently reviewed by Pietrangelo. Positive HFE analysis confirms the clinical diagnosis of hemochromatosis in asymptomatic individuals with blood tests showing increased iron stores, or for predictive testing of individuals with a family history of hemochromatosis. The alleles evaluated by HFE gene analysis are evident in ~80% of patients with hemochromatosis; a negative report for HFE gene does not rule out hemochromatosis. In a patient with negative HFE gene testing, elevated iron status for no other obvious reason, and family history of liver disease, additional evaluation of liver iron concentration is indicated. In this case, diagnosis of hemochromatosis is based on biochemical analysis and histologic examination of a liver biopsy. Assessment of the hepatic iron index (HII) is considered the “gold standard” for diagnosis of hemochromatosis.

MRI is emerging as an alternative to liver biopsy for measuring liver iron loading. For measuring liver iron concentrations, R2-MRI (also known as FerriScan)  has been validated and is coming into use in medical centers. It is not recommended in practice guidelines at this time

Prognosis:
A third of those untreated develop hepatocellular carcinoma.

Treatment:
Routine treatment in an otherwise-healthy person consists of regularly scheduled phlebotomies (bloodletting). When first diagnosed, the phlebotomies may be fairly frequent, perhaps as often as once a week, until iron levels can be brought to within normal range. Once iron and other markers are within the normal range, phlebotomies may be scheduled every other month or every three months depending upon the patient’s rate of iron loading.

For those unable to tolerate routine blood draws, there is a chelating agent available for use. The drug Deferoxamine binds with iron in the bloodstream and enhances its elimination via urine and faeces. Typical treatment for chronic iron overload requires subcutaneous injection over a period of 8–12 hours daily. Two newer iron chelating drugs that are licensed for use in patients receiving regular blood transfusions to treat thalassemia (and, thus, who develop iron overload as a result) are deferasirox and deferiprone.

Haemochromatosis is treated by:

•Reducing the amount of iron absorbed by the body – patients are advised to avoid iron-rich foods and alcohol.
•Removing excess iron from the body by removing blood from the body (venesection therapy or phlebotomy). Initially this may involve removing a unit of blood a week (sometimes for many months) until iron levels in the blood are normal. Then most people can be kept stable by removing a unit of blood every 2-3 months.

If phlebotomy is started before liver damage occurs the outlook is good, and the affected person can expect to live an otherwise normal life.

Acquired haemochromatosis is normally treated by a drug that binds iron and allows it to be excreted from the body.

Associated problems such as heart failure and diabetes are treated as appropriate.

Good advice:-
*Limit the amount of iron in your diet.
*Eating red or organ meats (such as liver) is not recommended.
*Iron supplements should also be avoided, including iron combined with other multivitamins.
*Vitamin C increases iron absorption from the gut and intake should also be limited.
*Avoid excess alcohol as this may make liver disease worse

Future prospects:
Your prospects largely depend on the stage at which the disease was diagnosed. Symptoms of tiredness and general weakness often improve, but joint problems may not.

Abdominal pain and liver enlargement can also lessen or disappear, and heart function may also improve with treatment.

However, liver cirrhosis is irreversible and a liver transplant may be required.

Patients with liver disease are also usually monitored for liver cancer, which can be a long-term complication.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
http://www.bbc.co.uk/health/physical_health/conditions/haemochromatosis1.shtml
http://en.wikipedia.org/wiki/Iron_overload
http://www.netdoctor.co.uk/diseases/facts/haemochromatosis.htm

https://runkle-science.wikispaces.com/Haemochromatosis

http://www.ironxs.com.au/the-symptoms-of-haemochromatosis.html

http://www.goldbamboo.com/topic-t1404-a1-6Haemochromatosis.html

Enhanced by Zemanta