Tag Archives: Anemia

Bone Broth Is A Most Nourishing Food And good For Any Ailment

[[Amazon_Link_Text]] [[Amazon_Link_Text]] [[Amazon_Link_Text]] [[Amazon_Link_Text]] [[Amazon_Link_Text]] [[Amazon_Link_Text]]

 

Bone broth has a long history of medicinal use. It’s known to be warm, soothing, and nourishing for body, mind, and soul.

CLICK & SEE THE PICTURES

Physicians harkening as far back as Hippocrates have associated bone broth with gut healing. And while the importance of gut health is just now starting to fill our medical journals, this knowledge is far from new.

In fact, you could say modern medicine is just now rediscovering how the gut influences health and disease.

Many of our modern diseases appear to be rooted in an unbalanced mix of microorganisms in your digestive system, courtesy of a diet that is too high in sugars and too low in healthful fats and beneficial bacteria.

Digestive problems and joint problems, in particular, can be successfully addressed using bone broth. But as noted by Dr. Kaayla Daniel, vice president of the Weston A. Price Foundation and coauthor (with Sally Fallon Morell) of the book, Nourishing Broth, bone broth is a foundational component of a healing diet regardless of what ails you.

BENEFITS OF BONE BROTH :

Leaky gut is the root of many health problems, especially allergies, autoimmune disorders, and many neurological disorders. The collagen found in bone broth acts like a soothing balm to heal and seal your gut lining, and broth is a foundational component of the Gut and Psychology Syndrome (GAPS) diet, developed by Russian neurologist Dr. Natasha Campbell-McBride.

The GAPS diet is often used to treat children with autism and other disorders rooted in gut dysfunction, but just about anyone with suboptimal gut health can benefit from it.

Bone broth is also a staple remedy for acute illnesses such as cold and flu. While there aren’t many studies done on soup, one study did find that chicken soup opened up the airways better than hot water.

Processed, canned soups  may not work as well as the homemade version made from slow-cooked bone broth. If combating a cold, make the soup hot and spicy with plenty of pepper.

The spices will trigger a sudden release of watery fluids in your mouth, throat, and lungs, which will help thin down the respiratory mucus so it’s easier to expel. Bone broth contains a variety of valuable nutrients in a form your body can easily absorb and use. And these are:

1. Calcium, phosphorus, and other minerals……Components of collagen and cartilage

2.Silicon and other trace minerals………….Components of bone and bone marrow

3.Glucosamine and chondroitin sulfate……….The “conditionally essential” amino acids proline, glycine, and glutamine

These nutrients account for many of the healing benefits of bone broth, which include the following:

1.Reduces joint pain and inflammation, courtesy of chondroitin sulfate, glucosamine, and other compounds extracted from the boiled down cartilage and collagen.

2.Inhibits infection caused by cold and flu viruses etc.
Indeed, Dr. Daniel reports2 chicken soup — known as “Jewish penicillin“—has been revered for its medicinal qualities at least since Moses Maimonides in the 12th century. Recent studies on cartilage, which is found abundantly in homemade broth, show it supports the immune system in a variety of ways; it’s a potent normalizer, true biological response modifier, activator of macrophages, activator of Natural Killer (NK) cells, rouser of B lymphocytes and releaser of Colony Stimulating Factor.

3.Fights inflammation: Amino acids such as glycine, proline, and arginine all have anti-inflammatory effects. Arginine, for example, has been found to be particularly beneficial for the treatment of sepsis3 (whole-body inflammation). Glycine also has calming effects, which may help you sleep better.

4.Promotes strong, healthy bones: Dr. Daniel reports bone broth contains surprisingly low amounts of calcium, magnesium and other trace minerals, but she says “it plays an important role in healthy bone formation because of its abundant collagen. Collagen fibrils provide the latticework for mineral deposition and are the keys to the building of strong and flexible bones.”

5.Promotes healthy hair and nail growth, thanks to the gelatin in the broth. Dr. Daniel reports that by feeding collagen fibrils, broth can even eliminate cellulite too.

In the conclution it can be said :Bone Broth—A Medicinal ‘Soul Food

Slow-simmering bones for a day will create one of the most nutritious and healing foods there is. You can use this broth for soups, stews, or drink it straight. The broth can also be frozen for future use. Making bone broth also allows you to make use of a wide variety of leftovers, making it very economical. Bone broth used to be a dietary staple, as were fermented foods, and the elimination of these foods from our modern diet is largely to blame for our increasingly poor health, and the need for dietary supplements.

“I would like to urge people to make as much broth as possible,” Dr. Daniel says in closing. “Keep that crockpot going; eat a variety of soups, and enjoy them thoroughly.”

Resources: Mercola.com

Advertisements

Myelodysplastic Syndrome

Definition:
The myelodysplastic syndromes (MDS, formerly known as “preleukemia”)  are a group of disorders caused by poorly formed or dysfunctional blood cells.Myelodysplastic syndromes occur when something goes wrong in your bone marrow — the spongy material inside our bones where blood cells are made.

CLICK & SEE THE PICTURES

Patients with MDS often develop severe anemia and require frequent blood transfusions. In most cases, the disease worsens and the patient develops cytopenias (low blood counts) due to progressive bone marrow failure. In about one third of patients with MDS, the disease transforms into acute myelogenous leukemia (AML), usually within months to a few years.

The myelodysplastic syndromes are all disorders of the stem cell in the bone marrow. In MDS, hematopoiesis (blood production) is disorderly and ineffective. The number and quality of blood-forming cells decline irreversibly, further impairing blood production.

There is no cure for myelodysplastic syndromes. Treatment for myelodysplastic syndromes usually focuses on reducing or preventing complications of the disease and of treatments. In certain cases, myelodysplastic syndromes are treated with a bone marrow transplant, which may help prolong life.

The median age at diagnosis of a MDS is between 60 and 75 years; a few patients are younger than 50; MDS diagnoses are rare in children. Males are slightly more commonly affected than females.

The exact number of people with MDS is not known because it can go undiagnosed and there is no mandated tracking of the syndrome. Some estimates are on the order of 10,000 to 20,000 new cases each year in the United States alone. The incidence is probably increasing as the age of the population increases, and some authors propose that the incidence in patients over 70 may be as high as 15 cases per 100,000 per year

Symptoms:
Myelodysplastic syndromes rarely cause signs or symptoms in the early stages of the disease.The symptoms are nonspecific and generally related to the blood cytopenias:

In time, myelodysplastic syndromes may cause:

*Anemia—chronic tiredness,fatigue, shortness of breath, chilled sensation, sometimes chest pain

*Neutropenia (low neutrophil count) —increased susceptibility to  frequent infections

*Pinpoint-sized red spots just beneath the skin caused by bleeding (petechiae)

*Thrombocytopenia (low platelet count) —increased susceptibility to bleeding and ecchymosis (bruising), as well as subcutaneous hemorrhaging resulting in purpura or petechia.

Many individuals are asymptomatic, and blood cytopenia or other problems are identified as a part of a routine blood count:

*neutropenia, anemia and thrombocytopenia (low cell counts of white and red blood cells, and platelets, respectively);

*splenomegaly or rarely hepatomegaly;

*abnormal granules in cells, abnormal nuclear shape and size; and/or

*chromosomal abnormalities, including chromosomal translocations and abnormal chromosome number.

Although there is some risk for developing acute myelogenous leukemia, about 50% of deaths occur as a result of bleeding or infection. Leukemia that occurs as a result of myelodysplasia is notoriously resistant to treatment.

Causes:
Myelodysplastic syndromes occur when something happens to disrupt the orderly and controlled production of blood cells. People with myelodysplastic syndromes have blood cells that are immature and defective, and instead of developing normally, they die in the bone marrow or just after entering your bloodstream. Over time, the number of immature, defective cells begins to surpass that of healthy blood cells, leading to problems such as anemia, infections and excess bleeding.

Doctors divide myelodysplastic syndromes into two categories based on their cause:

*Myelodysplastic syndromes with no known cause. Called de novo myelodysplastic syndromes, doctors don’t know what causes these. De novo myelodysplastic syndromes are often more easily treated than are myelodysplastic syndromes with a known cause.

*Myelodysplastic syndromes caused by chemicals and radiation. Myelodysplastic syndromes that occur in response to cancer treatments, such as chemotherapy and radiation, or in response to chemical exposure are called secondary myelodysplastic syndromes. Secondary myelodysplastic syndromes are often more difficult to treat.

Types of myelodysplastic syndromes:
The World Health Organization divides myelodysplastic syndromes into subtypes based on the type of cells involved. Myelodysplastic syndrome subtypes include:

*Refractory cytopenia with unilineage dysplasia. In this type, one or two blood cell types are low in number — most commonly, the red blood cells are affected. Also, one type of blood cell appears abnormal under the microscope.

*Refractory anemia with ringed sideroblasts. This differs from refractory anemia in that existing red blood cells contain excess amounts of iron (ringed sideroblasts).

*Refractory cytopenia with multilineage dysplasia. In this myelodysplastic syndrome, two of the three types of blood cells are abnormal, and less than 1 percent of the cells in the bloodstream are immature cells (blasts).

*Refractory anemia with excess blasts — types 1 and 2. In both these syndromes, any of the three types of cells — red blood cells, white blood cells or platelets — may be low in number and appear abnormal under a microscope.

*Myelodysplastic syndrome, unclassified. In this uncommon syndrome, there are reduced numbers of one of the three types of mature blood cells, and either the white blood cells or platelets look abnormal under a microscope.

*Myelodysplastic syndrome associated with isolated del(5q) chromosome abnormality. People with this syndrome have low numbers of red blood cells, and the cells have a specific defect in their DNA.
Risk Factors:
Factors that may increase your risk of myelodysplastic syndromes include:

*Older age. Most people with myelodysplastic syndromes are adults older than 60. Anyone can develop myelodysplastic syndromes, but they’re rare in younger people.

*Being male. Myelodysplastic syndromes occur more frequently in men than in women.

*Treatment with chemotherapy or radiation. Your risk of myelodysplastic syndromes is increased if you received chemotherapy or radiation, both of which are commonly used to treat cancer.

*Exposure to certain chemicals. Chemicals linked to myelodysplastic syndromes include tobacco smoke, pesticides and industrial chemicals, such as benzene.

*Exposure to heavy metals. Heavy metals linked to myelodysplastic syndrome include lead and mercury.

Complications:
Complications of myelodysplastic syndromes include:

*Anemia. Reduced numbers of red blood cells can cause anemia, which can make you feel tired.

*Recurrent infections. Having too few white blood cells increases your risk of serious infections.

*Bleeding that won’t stop. Lacking platelets in your blood to stop bleeding can lead to excessive bleeding that won’t stop.

*Increased risk of cancer. Some people with myelodysplastic syndromes may eventually develop leukemia, a cancer of the blood cells.

Diagnosis:
MDS must be differentiated from anemia, thrombocytopenia, and/or leukopenia. Usually, the elimination of other causes of these cytopenias, along with a dysplastic bone marrow, is required to diagnose a myelodysplastic syndrome.

A typical investigation includes:
*Full blood count and examination of blood film. The blood film morphology can provide clues about hemolytic anemia, clumping of the platelets leading to spurious thrombocytopenia, or leukemia.

*Blood tests to eliminate other common causes of cytopenias, such as lupus, hepatitis, B12, folate, or other vitamin deficiencies, renal failure or heart failure, HIV, hemolytic anemia, monoclonal gammopathy. Age-appropriate cancer screening should be considered for all anemic patients.

*Bone marrow examination by a hematopathologist. This is required to establish the diagnosis, since all hematopathologists consider dysplastic marrow the key feature of myelodysplasia.

*Cytogenetics or chromosomal studies. This is ideally performed on the bone marrow aspirate. Conventional cytogenetics requires a fresh specimen, since live cells are induced to enter metaphase to enhance chromosomal staining. Alternatively, virtual karyotyping can be done for MDS,[10] which uses computational tools to construct the karyogram from disrupted DNA. Virtual karyotyping does not require cell culture and has dramatically higher resolution than conventional cytogenetics, but cannot detect balanced translocations.

*Flow cytometry is helpful to establish the presence of any lymphoproliferative disorder in the marrow.

Anemia dominates the early course. Most symptomatic patients complain of the gradual onset of fatigue and weakness, dyspnea, and pallor, but at least half the patients are asymptomatic and their MDS is discovered only incidentally on routine blood counts. Previous chemotherapy or radiation exposure is an important historic fact. Fever and weight loss should point to a myeloproliferative rather than myelodysplastic process. Children with Down syndrome are susceptible to MDS, and a family history may indicate a hereditary form of sideroblastic anemia or Fanconi anemia.

The average age at diagnosis for MDS is about 65 years, but pediatric cases have been reported. Some patients have a history of exposure to chemotherapy (especially alkylating agents such as melphalan, cyclophosphamide, busulfan, and chlorambucil) or radiation (therapeutic or accidental), or both (e.g., at the time of stem cell transplantation for another disease). Workers in some industries with heavy exposure to hydrocarbons such as the petroleum industry have a slightly higher risk of contracting the disease than the general population. Males are slightly more frequently affected than females. Xylene and benzene exposure has been associated with myelodysplasia. Vietnam veterans that were exposed to Agent Orange are at risk of developing MDS.

The features generally used to define a MDS are: blood cytopenias; ineffective hematopoiesis; dyserythropoiesis; dysgranulopoiesis; dysmegakaropoiesis and increased myeloblast.

Dysplasia can affect all three lineages seen in the bone marrow. The best way to diagnose dysplasia is by morphology and special stains (PAS) used on the bone marrow aspirate and peripheral blood smear. Dysplasia in the myeloid series is defined by:

Granulocytic series
1.Hypersegmented neutrophils (also seen in Vit B12/Folate deficiency)
2.Hyposegmented neutrophils (Pseudo-Pelger Huet)
3.Hypogranular neutrophils or pseudo Chediak Higashi large granules
4.Auer rods – automatically RAEB II (if blast count <5% in the peripheral blood and <10% in the bone marrow aspirate) also note Auer rods may be seen in mature neutrophils in AML with translocation t(8;21)
5.Dimorphic granules (basophilic and eosinophilic granules) within eosinophils
Erythroid series
1.Binucleated erythroid percursors and karyorrhexis
2.Erythroid nuclear budding
3.Erythroid nuclear strings or internuclear bridging (also seen in congenital dyserythropoietic anemias)
4.Loss of E-cadherin in normoblasts is a sign of aberrancy
5.PAS (globular in vacuoles or diffuse cytoplasmic staining) within erythroid precursors in the bone marrow aspirate (has no bearing on paraffin fixed bone marrow biopsy). Note: One can see PAS vacuolar positivity in L1 and L2 blasts (AFB classification; the L1 and L2 nomenclature is not used in the WHO classification)
6.Ringed sideroblasts seen on Prussian blue iron stain (10 or more iron granules encircling 1/3 or more of the nucleus and >15% ringed sideroblasts when counted amongst red cell precursors)
Megakaryocytic series (can be the most subjective)
1.Hyposegmented nuclear features in platelet producing megakaryocytes (lack of lobation)
2.Hypersegmented (osteoclastic appearing) megakaryocytes
3.Ballooning of the platelets (seen with interference contrast microscopy)
Other stains can help in special cases (PAS and napthol ASD chloroacetate esterase positivity) in eosinophils is a marker of abnormality seen in chronic eosinophilic leukemia and is a sign of aberrancy.

On the bone marrow biopsy high grade dysplasia (RAEB-I and RAEB-II) may show atypical localization of immature precursors (ALIPs) which are islands of immature precursors cells (myeloblasts and promyelcytes) localized to the center of intertrabecular space rather than adjacent to the trabeculae or surrounding arterioles. This morphology can be difficult to recognize from treated leukemia and recovering immature normal marrow elements. Also topographic alteration of the nucleated erythroid cells can be seen in early myelodysplasia (RA and RARS), where normoblasts are seen next to bony trabeculae instead of forming normal interstitially placed erythroid islands.

Myelodysplasia is a diagnosis of exclusion and must be made after proper determination of iron stores, vitamin deficiencies, and nutrient deficiencies are ruled out. Also congenital diseases such as congenital dyserythropoietic anemia (CDA I through IV) has been recognized, Pearson’s syndrome (sideroblastic anemia), Jordans anomaly – vacuolization in all cell lines may be seen in Chanarin-Dorfman syndrome, ALA (aminolevulinic acid) enzyme deficiency, and other more esoteric enzyme deficiencies are known to give a pseudomyelodysplastic picture in one of the cell lines, however, all three cell lines are never morphologically dysplastic in these entities with the exception of chloramphenicol, arsenic toxicity and other poisons.

All of these conditions are characterized by abnormalities in the production of one or more of the cellular components of blood (red cells, white cells other than lymphocytes and platelets or their progenitor cells, megakaryocytes).

 

Treatment :
No definitive cure or treatment for myelodysplastic syndromes exists. Instead, most people receive supportive care to help manage symptoms such as fatigue and to prevent bleeding and infections.

Blood transfusions
Blood transfusions can be used to replace red blood cells, white blood cells or platelets in people with myelodysplastic syndromes.

Medications :
Medications used to increase the number of healthy blood cells your body produces include:

*Medications that increase the number of blood cells your body makes. Called growth factors, these medications are artificial versions of substances found naturally in your bone marrow. Some growth factors, such as erythropoietin or darbepoietin, can reduce the need for blood transfusions by increasing red blood cells. Others may help prevent infections by increasing white blood cells in people with certain myelodysplastic syndromes.Medications that stimulate blood cells to mature, rather than remain immature.
*Medications such as azacitidine (Vidaza) and decitabine (Dacogen) may improve the quality of life of people with certain myelodysplastic syndromes and help delay progression to acute myelogenous leukemia. But these drugs aren’t effective in all people, and some can cause further blood cell problems. Medications that suppress your immune system.

*Medications used to suppress the immune system may be used in certain myelodysplastic syndromes.Medication for people with a certain genetic abnormality. If your myelodysplastic syndrome is associated with a genetic abnormality called isolated del(5q), your doctor may recommend lenalidomide (Revlimid). Lenalidomide may reduce the need for blood transfusions in people with this abnormality.

*Bone marrow stem cell transplant
During a bone marrow stem cell transplant, your defective blood cells are destroyed using powerful chemotherapy drugs. Then the abnormal bone marrow stem cells are replaced with healthy, donated cells (allogeneic transplant). Unfortunately, few people are candidates for this procedure because of the high risks involved in transplanting in older adults — those most likely to have myelodysplastic syndromes. Even among young, relatively healthy people, the number of transplant-related complications is high.

Prognosis:
Indicators of a good prognosis Younger age; normal or moderately reduced neutrophil or platelet counts; low blast counts in the bone marrow(<20%) and no blasts in the blood; no Auer rods; ringed sideroblasts; normal karyotypes of mixed karyotypes without complex chromosome abnormalities and in vitro marrow culture- non leukemic growth pattern.

Indicators of a poor prognosis Advanced age; Severe neutropenia or thrombocytopenia ; high blast count in the bone marrow (20-29%) or blasts in the blood; Auer rods; absence of ringed sideroblasts; abnormal localization or immature granulocyte precursors in bone marrow section all or mostly abnormal karyotypes or complex marrow chromosome abnormalities and in vitro bone emarrow culture-leukemic growth pattern.

Prognosis and karyotype Good: Normal, -Y, del(5q), del(20q)
Intermediate or variable: +8, other single or double anomalies
Poor; Complex (>3 chromosomal aberrations); chromosome 7 anomalies

The International Prognostic Scoring System (IPSS) is the most commonly used tool in MDS to predict long-term outcome.

Cytogenetic abnormalities can be detected by conventional cytogenetics, a FISH panel for MDS, or Virtual Karyotype.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose

Resources:
http://www.mayoclinic.com/health/myelodysplastic-syndromes/DS00596
http://en.wikipedia.org/wiki/Myelodysplastic_syndrome

http://www.bmj.com/content/314/7084/883.full

http://www.medicalook.com/Blood_disorders/Myelodysplastic_syndrome.html

Enhanced by Zemanta

Haemochromatosis

Definition:
Haemochromatosis is a disease caused by excess iron in the body.

Iron is needed in the diet to maintain good health, particularly for making red blood cells that carry oxygen around the body. These red blood cells contain large amounts of iron.

Lack of iron can cause anaemia, but excessive iron is toxic. The body has few ways of disposing of unwanted iron, so it builds up in tissues causing damage and disease.

Haemochromatosis – or genetic haemochromatosis (GH) – is a disorder that causes the body to absorb an excessive amount of iron from the diet.

CLICK & SEE

We can only use a limited amount of iron and any excess is deposited around the body. This accumulates mainly in the liver, but can also affect the heart, pancreas and pituitary gland, damaging these vital body organs and resulting in a deterioration of their functional capacity.

Haemochromatosis is more common in Caucasian or white populations, with about 1 in 300 to 1 in 400 affected. About half that number are affected in black populations.

Men are more likely to have hereditary haemochromatosis and suffer from it at an earlier age, as women regularly lose iron in menstruation or use stores in pregnancy.

Symptoms:
Although haemochromatosis and the potential for the condition to cause problems is present from birth, symptoms don’t usually become apparent until middle age.

CLICK & SEE

Common symptoms that might be noticed then include:

•weakness, tiredness and lack of energy
•joint pain and stiffness – particularly in the hands and fingers
•a tanned or bronzed appearance of the skin
•impotence in men
•shrinking of testicles
•weight loss
•abdominal pain
.
Later, more serious symptoms may develop including:

•diabetes
•arthritis
•heart problems
•enlargement or damage to the liver

Clinical presentation:
Organs commonly affected by haemochromatosis are the liver, heart, and endocrine glands.

Haemochromatosis may present with the following clinical syndromes:

*Cirrhosis of the liver
*Diabetes due to pancreatic islet cell failure
*Cardiomyopathy
*Arthritis (iron deposition in joints)
*Testicular failure
*Tanning of the skin

Causes:
The causes can be distinguished between primary cases (hereditary or genetically determined) and less frequent secondary cases (acquired during life). People of Celtic (Irish, Scottish, Welsh) origin have a particularly high incidence of whom about 10% are carriers of the gene and 1% sufferers from the condition.

 

Primary haemochromatosis:
The fact that most cases of haemochromatosis were inherited was well known for most of the 20th century, though they were incorrectly assumed to depend on a single gene. The overwhelming majority actually depend on mutations of the HFE gene discovered in 1996, but since then others have been discovered and sometimes are grouped together as “non-classical hereditary haemochromatosis”, “non-HFE related hereditary haemochromatosis”, or “non-HFE haemochromatosis

It is thought to be mainly caused by a mutation of a gene called HFE, which probably allows excess iron to be absorbed from the diet. This mutation is known as C282Y and to develop haemochromatosis you usually need two genes (one from each parent) to be C282Y.

However, not everyone with the mutation may develop the disease, and it may occur if only one C282Y gene is present.

Confusingly, another mutation labelled H63D elsewhere on the HFE gene may occur alone or with C282Y and also influence iron levels.

Other rare mutations may give rise to haemochromatosis, especially in children.

Secondary haemochromatosis:
*Severe chronic haemolysis of any cause, including intravascular haemolysis and ineffective erythropoiesis (haemolysis within the bone marrow).
*Multiple frequent blood transfusions (either whole blood or just red blood cells), which are usually needed either by individuals with hereditary anaemias (such as beta-thalassaemia major, sickle cell anaemia, and Diamond–Blackfan anaemia) or by older patients with severe acquired anaemias such as in myelodysplastic syndromes.
*Excess parenteral iron supplements, such as can acutely happen in iron poisoning
*Excess dietary iron
*Some disorders do not normally cause haemochromatosis on their own, but may do so in the presence of other predisposing factors. These include cirrhosis (especially related to alcohol abuse), steatohepatitis of any cause, porphyria cutanea tarda, prolonged haemodialysis, post-portacaval shunting.

Risk Factors:
The onset of hereditary haemochromatosis usually occurs between the ages of 30 and 60 as the build up of iron takes years.

However, a rapid form of the disease does affect children. If left untreated excess iron builds up in the organs especially the liver, heart and pancreas. This may cause heart or liver failure, which can be fatal.

Diagnosis:
There are several methods available for diagnosing and monitoring iron loading including:

*Serum ferritin
*Liver biopsy
*HFE
*MRI

Serum ferritin is a low-cost, readily available, and minimally invasive method for assessing body iron stores. However, the major problem with using it as an indicator of iron overload is that it can be elevated in a range of other medical conditions unrelated to iron levels including infection, inflammation, fever, liver disease, renal disease, and cancer. Also, total iron binding capacity may be low, but can also be normal.

The standard of practice in diagnosis of hemochromatosis was recently reviewed by Pietrangelo. Positive HFE analysis confirms the clinical diagnosis of hemochromatosis in asymptomatic individuals with blood tests showing increased iron stores, or for predictive testing of individuals with a family history of hemochromatosis. The alleles evaluated by HFE gene analysis are evident in ~80% of patients with hemochromatosis; a negative report for HFE gene does not rule out hemochromatosis. In a patient with negative HFE gene testing, elevated iron status for no other obvious reason, and family history of liver disease, additional evaluation of liver iron concentration is indicated. In this case, diagnosis of hemochromatosis is based on biochemical analysis and histologic examination of a liver biopsy. Assessment of the hepatic iron index (HII) is considered the “gold standard” for diagnosis of hemochromatosis.

MRI is emerging as an alternative to liver biopsy for measuring liver iron loading. For measuring liver iron concentrations, R2-MRI (also known as FerriScan)  has been validated and is coming into use in medical centers. It is not recommended in practice guidelines at this time

Prognosis:
A third of those untreated develop hepatocellular carcinoma.

Treatment:
Routine treatment in an otherwise-healthy person consists of regularly scheduled phlebotomies (bloodletting). When first diagnosed, the phlebotomies may be fairly frequent, perhaps as often as once a week, until iron levels can be brought to within normal range. Once iron and other markers are within the normal range, phlebotomies may be scheduled every other month or every three months depending upon the patient’s rate of iron loading.

For those unable to tolerate routine blood draws, there is a chelating agent available for use. The drug Deferoxamine binds with iron in the bloodstream and enhances its elimination via urine and faeces. Typical treatment for chronic iron overload requires subcutaneous injection over a period of 8–12 hours daily. Two newer iron chelating drugs that are licensed for use in patients receiving regular blood transfusions to treat thalassemia (and, thus, who develop iron overload as a result) are deferasirox and deferiprone.

Haemochromatosis is treated by:

•Reducing the amount of iron absorbed by the body – patients are advised to avoid iron-rich foods and alcohol.
•Removing excess iron from the body by removing blood from the body (venesection therapy or phlebotomy). Initially this may involve removing a unit of blood a week (sometimes for many months) until iron levels in the blood are normal. Then most people can be kept stable by removing a unit of blood every 2-3 months.

If phlebotomy is started before liver damage occurs the outlook is good, and the affected person can expect to live an otherwise normal life.

Acquired haemochromatosis is normally treated by a drug that binds iron and allows it to be excreted from the body.

Associated problems such as heart failure and diabetes are treated as appropriate.

Good advice:-
*Limit the amount of iron in your diet.
*Eating red or organ meats (such as liver) is not recommended.
*Iron supplements should also be avoided, including iron combined with other multivitamins.
*Vitamin C increases iron absorption from the gut and intake should also be limited.
*Avoid excess alcohol as this may make liver disease worse

Future prospects:
Your prospects largely depend on the stage at which the disease was diagnosed. Symptoms of tiredness and general weakness often improve, but joint problems may not.

Abdominal pain and liver enlargement can also lessen or disappear, and heart function may also improve with treatment.

However, liver cirrhosis is irreversible and a liver transplant may be required.

Patients with liver disease are also usually monitored for liver cancer, which can be a long-term complication.

Disclaimer: This information is not meant to be a substitute for professional medical advise or help. It is always best to consult with a Physician about serious health concerns. This information is in no way intended to diagnose or prescribe remedies.This is purely for educational purpose.

Resources:
http://www.bbc.co.uk/health/physical_health/conditions/haemochromatosis1.shtml
http://en.wikipedia.org/wiki/Iron_overload
http://www.netdoctor.co.uk/diseases/facts/haemochromatosis.htm

https://runkle-science.wikispaces.com/Haemochromatosis

http://www.ironxs.com.au/the-symptoms-of-haemochromatosis.html

http://www.goldbamboo.com/topic-t1404-a1-6Haemochromatosis.html

Enhanced by Zemanta

Don’t Ever Drink This During Pregnancy

Fluoride avoidance reduced anemia in pregnant women, and decreased preterm births, according to a new study.

Anemia in pregnancy can lead to maternal and infant mortality; it continues to be a problem despite nutritional counseling and maternal iron and folic acid supplementation.

Medical News Today reports:
“Anemic pregnant women living in India, whose urine contained 1 mg/L fluoride or more, were separated into two groups. The experimental group avoided fluoride in water, food and other sources …

Results reveal that anemia was reduced and pre-term and low-birth-weight babies were considerably fewer in the fluoride-avoidance group.”

Click to see:Chlorine may cause birth defect

Resources:
Medical News Today September 3, 2010
Current Science May 25, 2010, Vol. 98, No. 10

Enhanced by Zemanta

Top Eight Cancer Signs Pinpointed

The eight unexplained symptoms most closely linked to cancer have been highlighted by researchers.

The Keele University team also points to the age at which patients should be most concerned by the symptoms, which include blood in urine and anaemia.

The other symptoms are: rectal blood, coughing up blood, breast lump or mass, difficulty swallowing, post-menopausal bleeding and abnormal prostate tests.

Eight signs of cancer:-
*Anaemia
*Blood in urine
*Coughing up blood
*Difficulty swallowing
*Breast lump or mass
*Post-menopausal bleeding
*Abnormal prostate test
*Rectal blood

There are more than 200 different types of cancer, which cause many different symptoms.

Cancer Research UK said unusual changes in a person’s health should be checked as early as possible.


Source
: BBC NEWS: 26th. Aug.2010

Enhanced by Zemanta